Electrochemical Characterisation of Poly(aniline-co-N-methylaniline) and Poly(aniline-co-N-ethylaniline) Films on Pencil Graphite Electrode for Supercapacitor Applications

2013 ◽  
Vol 66 (7) ◽  
pp. 825 ◽  
Author(s):  
Andac Arslan ◽  
Evrim Hur

In this work, poly(aniline-co-N-methylaniline) (co-PNMA) and poly(aniline-co-N-ethylaniline) (co-PNEA) have been electrochemically synthesised on pencil graphite electrode (PGE) surface to use as an electrode material for supercapacitors. The films have been formed from aqueous solution of monomers and sulfuric acid as electrolyte. The copolymer films have been characterised by cyclic voltammetry (CV), Mott-Schottky (MS) analysis, and scanning electron microscopy (SEM). The electrochemical storage properties of uncoated electrode and copolymer coated electrodes (PGE/co-PNMA and PGE/co-PNEA) have been investigated via CV, electrochemical impedance spectroscopy (EIS), and repeating chronopotentiometry (RCP) methods in 0.100 M H2SO4 solution. Experimental results indicate that PGE/co-PNMA exhibits higher specific capacitance than PGE/co-PNEA. Highest specific capacitance values of the PGE/co-PNMA and PGE/co-PNEA have been obtained as 213.85 mF g–1 (17.7 mF cm–2) and 48.60 mF g–1 (4.36 mF cm–2) at 50 mV s–1, respectively when compared with that of uncoated PGE which is 1.63 mF g–1 (0.14 mF cm–2). Charge-discharge characteristics of the electrodes have shown that both of the electrodes can be used as supercapacitor electrode active materials for low voltage (<10 V) applications.

2014 ◽  
Vol 68 (11) ◽  
Author(s):  
Evrim Hur ◽  
Andac Arslan

AbstractCobalt ion (Co2+)-doped polyaniline (PANI-Co), poly(N-methylaniline) (PNMA-Co), and poly(N-ethylaniline) (PNEA-Co) films were synthesised electrochemically on a pencil graphite electrode (PGE) and their electrochemical properties were investigated for supercapacitor applications. The polymer film-coated electrodes (PGE/PANI-Co, PGE/PNMA-Co, and PGE/PNEA-Co) thus obtained were characterised by scanning electron microscopy (SEM) and different electrochemical methods. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were employed in 0.1 M H2SO4 solution to calculate the specific capacitance (C S) values of the electrodes. The maximum C S of 192.94 F g−1, 139.83 F g−1, and 47.12 F g−1 were achieved for PGE/PANI-Co, PGE/PNMA-Co, and PGE/PNEA-Co at 1 mV s−1, respectively. On the other hand, the charge/discharge stability of the electrodes was analysed using the repeating chronopotentiometry (RCP) method. The RCP measurements indicate that the electrodes could be used as an electrode active material for low voltage supercapacitor applications.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
Andac Arslan ◽  
Evrim Hur

AbstractThree types of conducting polymers, polyaniline (PANI), poly(N-methylaniline) (PNMA), poly(N-ethylaniline) (PNEA) were electrochemically deposited on pencil graphite electrode (PGE) surfaces characterized as electrode active materials for supercapacitor applications. The obtained films were electrochemically characterized using different electrochemical methods. Redox parameters, electro-active characteristics, and electrostability of the polymer films were investigated via cyclic voltammetry (CV). Doping types of the polymer films were determined by the Mott-Schottky method. Electrochemical capacitance properties of the polymer film coating PGE (PGE/PANI, PGE/PNMA, and PGE/PNEA) were investigated by the CV and potentiostatic electrochemical impedance spectroscopy (EIS) methods in a 0.1 M H2SO4 aqueous solution. Thus, capacitance values of the electrodes were calculated. Results show that PGE/PANI, PGE/PNMA, and PGE/PNEA exhibit maximum specific capacitances of 131.78 F g−1 (≈ 436.50 mF cm−2), 38.00 F g−1 (≈ 130.70 mF cm−2), and 16.50 F g−1 (≈ 57.83 mF cm−2), respectively. Moreover, charge-discharge capacities of the electrodes are reported and the specific power (SP) and specific energy (SE) values of the electrodes as supercapacitor materials were calculated using repeating chronopotentiometry.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1141 ◽  
Author(s):  
José D. Velásquez ◽  
Monika Tomczykowa ◽  
Marta E. Plonska-Brzezinska ◽  
Manuel N. Chaur

Herein, we report the surface functionalization of carbon nano-onions (CNOs) through an amidation reaction that occurs between the oxidized CNOs and 4-(pyren-4-yl)butanehydrazide. Raman and Fourier transform infrared spectroscopy methods were used to confirm the covalent functionalization. The percentage or number of groups in the outer shell was estimated with thermal gravimetric analysis. Finally, the potential applications of the functionalized CNOs as electrode materials in supercapacitors were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. Functionalization increased the specific capacitance by approximately 138% in comparison to that of the pristine CNOs, while acid-mediated oxidation reduced the specific capacitance of the nanomaterial by 24%.


2011 ◽  
Vol 345 ◽  
pp. 75-78 ◽  
Author(s):  
Wei Zhou ◽  
Man Lin Tan ◽  
Xiao Song Zhou

In this paper, a facilesolution method was employed to synthesize the graphene-NiO composite. SEM and XRD results indicated the graphene sheets were covered by the NiO nanoplates. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to measure the electrochemical properties of the composite. The specific capacitance reached 1292F/g at a scan rate of 5mV/s. The results show that this composite is a promising material for supercapacitor electrode.


2020 ◽  
Vol 11 (2) ◽  
pp. 8702-8715

Salmonella enterica is considered one of the most common bacterial agent causes of acute gastroenteritis and foodborne illness in humans worldwide. Antibiotic-resistant is considered as a major problem in Salmonella enterica Serovar. This study introduces a new simple and sensitive aptasensor based on chitosan (Chi)-electrospun carbon nanofibers (CNF) /gold nanoparticles (GNPs) decorated pencil graphite electrode (GE) as a novel platform for electrochemical detection of Salmonella enterica Serovar. A Salmonella-specific recognition aptamer ssDNA sequence was used in the development of this voltammetric biosensor. Electrochemical behaviors of electrodes; unmodified GE, CNF-Chi/GE, GNPs/CNF-Chi/GE, GNPs/CNF-Chi/GEs linked with the aptamer were studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). After the optimization of experimental conditions (e.g., CNF concentration, pH, and incubation time), electrochemical detection of Salmonella was performed via differential pulse voltammetry (DPV) in methylene blue solution. The designed aptasensor exhibited a linear range of 10 to 105 (CFU/mL) with the limit of detection (LOD) 1.223 (Cfu/mL) for Salmonella. This aptasensor displayed excellent selectivity and remarkable sensitivity in terms of the detection of Salmonella enterica even in the real samples as compared to the polymerase chain reaction (PCR) technique. The constructed aptasensor is a highly sensitive sensor for the detection of Salmonella enterica and also can be tailored for various other targets.


2018 ◽  
Vol 96 (5) ◽  
pp. 477-483 ◽  
Author(s):  
Saeid Panahi ◽  
Moosa Es’haghi

In this work, PANI/MnCo2O4 nanocomposite was prepared via in-situ chemical polymerization method. Materials synthesized were characterized by FTIR spectroscopy, X-ray diffraction, and scanning electron spectroscopy. In addition, surface characterization of samples such as specific surface area, pore volume, and pore size distribution was studied. Supercapacitor capability of materials was investigated in 1 mol L–1 Na2SO4 solution using cyclic voltammetry in different potential scan rates and electrochemical impedance spectroscopy (EIS). The specific capacitance of materials was calculated, and it was observed that the specific capacitance of PANI/MnCo2O4 nanocomposite was 185 F g−1, much larger than PANI. Moreover, the prepared nanocomposite exhibited better rate capability in scan rate of 100 mV s−1 with respect to PANI. The EIS experiments revealed that the nanocomposite has lower charge transfer resistance compared with pure PANI. Subsequently, it was shown that the nanocomposite cycling performance was superior to the PANI cycling performance.


2016 ◽  
Vol 852 ◽  
pp. 921-927 ◽  
Author(s):  
Huan Lin ◽  
Dong Lin Zhao ◽  
Ran Ran Yao ◽  
Zhao Hui Qiang ◽  
Wan Xin Zhang ◽  
...  

A homogeneous Ni (OH)2/graphene nanosheet (GNS) nanocomposite with excellent supercapacitive performance has been synthesized by a facile chemical precipitation. The Ni (OH)2/GNS nanocomposite presented an ideal morphology with the nanosized Ni (OH)2 particles homogeneously growing on the GNS. Its microstructure, morphology were investigated by XRD, SEM and TEM. The electrochemical performance of the Ni (OH)2/GNS nanocomposite was test by cyclic voltammetry, galvanostatic charge−discharge and electrochemical impedance spectroscopy techniques. The homogeneous Ni (OH)2/GNS nanocomposite exhibited a high specific capacitance of 1667 F/g at a current density of 1A/g and maintained a good stability in 5000 cycles, suggesting that it can be a promising candidate for supercapacitor. The high specific capacitance and remarkable rate capability are promising for applications in supercapacitors with both high energy and power densities. The Ni (OH)2/GNS nanocomposite exhibited large specific capacitance, high rate capability and good cycling stability.


2012 ◽  
Vol 1388 ◽  
Author(s):  
Punya A. Basnayaka ◽  
Farah Alvi ◽  
Manoj K. Ram ◽  
Robert Tufts ◽  
Ashok Kumar

ABSTRACTThe effect of two substituent groups, ortho-methoxy (-OCH3) and methyl (-CH3) in aniline, have been studied for supercapacitor applications. The polyaniline (PANI), poly (o-anisidine) (POA) and poly (o-toluidine) (POT) have been synthesized by oxidative polymerization method, and characterized by Cyclic Voltammetry (CV), UV–visible spectroscopy, Raman spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. The specific capacitance, charging/discharging and electrochemical impedance characteristics of the supercapacitor fabricated using PANI, POA, as well as POT electrodes are evaluated in 2M H2SO4 electrolytic media. The highest specific capacitance of 400 F/g is calculated for PANI, whereas, POA and POT have exhibited 360 F/g and 325 F/g capacitance in supercapacitor studies.


2019 ◽  
Vol 7 (8) ◽  
pp. 4055-4062 ◽  
Author(s):  
Guijun Li ◽  
Xiaoyong Mo ◽  
Wing-Cheung Law ◽  
Kang Cheung Chan

A laser induced forward transfer printed graphene/nickel composite electrode for high areal specific capacitance supercapacitor applications.


Sign in / Sign up

Export Citation Format

Share Document