scholarly journals Evaluation of the Covalent Functionalization of Carbon Nano-Onions with Pyrene Moieties for Supercapacitor Applications

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1141 ◽  
Author(s):  
José D. Velásquez ◽  
Monika Tomczykowa ◽  
Marta E. Plonska-Brzezinska ◽  
Manuel N. Chaur

Herein, we report the surface functionalization of carbon nano-onions (CNOs) through an amidation reaction that occurs between the oxidized CNOs and 4-(pyren-4-yl)butanehydrazide. Raman and Fourier transform infrared spectroscopy methods were used to confirm the covalent functionalization. The percentage or number of groups in the outer shell was estimated with thermal gravimetric analysis. Finally, the potential applications of the functionalized CNOs as electrode materials in supercapacitors were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. Functionalization increased the specific capacitance by approximately 138% in comparison to that of the pristine CNOs, while acid-mediated oxidation reduced the specific capacitance of the nanomaterial by 24%.

2013 ◽  
Vol 66 (7) ◽  
pp. 825 ◽  
Author(s):  
Andac Arslan ◽  
Evrim Hur

In this work, poly(aniline-co-N-methylaniline) (co-PNMA) and poly(aniline-co-N-ethylaniline) (co-PNEA) have been electrochemically synthesised on pencil graphite electrode (PGE) surface to use as an electrode material for supercapacitors. The films have been formed from aqueous solution of monomers and sulfuric acid as electrolyte. The copolymer films have been characterised by cyclic voltammetry (CV), Mott-Schottky (MS) analysis, and scanning electron microscopy (SEM). The electrochemical storage properties of uncoated electrode and copolymer coated electrodes (PGE/co-PNMA and PGE/co-PNEA) have been investigated via CV, electrochemical impedance spectroscopy (EIS), and repeating chronopotentiometry (RCP) methods in 0.100 M H2SO4 solution. Experimental results indicate that PGE/co-PNMA exhibits higher specific capacitance than PGE/co-PNEA. Highest specific capacitance values of the PGE/co-PNMA and PGE/co-PNEA have been obtained as 213.85 mF g–1 (17.7 mF cm–2) and 48.60 mF g–1 (4.36 mF cm–2) at 50 mV s–1, respectively when compared with that of uncoated PGE which is 1.63 mF g–1 (0.14 mF cm–2). Charge-discharge characteristics of the electrodes have shown that both of the electrodes can be used as supercapacitor electrode active materials for low voltage (<10 V) applications.


2020 ◽  
Vol 20 (8) ◽  
pp. 4854-4859 ◽  
Author(s):  
Lei Chen ◽  
Xu Chen ◽  
Yaqiong Wen ◽  
Bixia Wang ◽  
Yangchen Wu ◽  
...  

Nitrogen-enriched reduced graphene oxide electrode material can be successfully prepared through a simple hydrothermal method. The morphology and microstructure of ready to use electrode material is measured by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Physical characterizations revealed that nitrogen-enriched reduced graphene oxide electrode material possessed high specific surface area of 429.6 m2 · g−1, resulting in high utilization of electrode materials with electrolyte. Electrochemical performance of nitrogen-enriched reduced graphene oxide electrode was also investigated by cyclic voltammetry (CV), galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS) in aqueous in 6 M KOH with a three-electrode system, which displayed a high specific capacitance about 223.5 F · g−1 at 1 mV · s−1. More importantly, nitrogenenriched reduced graphene oxide electrode exhibited outstanding stability with 100% coulombic efficiency and with no specific capacitance loss under 2 A · g−1 after 10000 cycles. The supercapacitive behaviors indicated that nitrogen-enriched reduced graphene oxide can be a used as a promising electrode for high-performance super-capacitors.


2013 ◽  
Vol 690-693 ◽  
pp. 1483-1489 ◽  
Author(s):  
You Lin Pan ◽  
Barry Arkles ◽  
James Kendenburg

Four different synthetic methods for preparation of aromatic sialnes have been developed and the hydrosilylation route has been proved to be one as the most commercially significant. A series of specialty aryl silanes have been synthesized for the potential applications of high performance and high temperature as silane coupling agents. The thermal stabilities of the bridged aromatic silanes have been examined using thermal gravimetric analysis (TGA) and compared against the gamma-substituted alkylsilanes and phenyltrimethoxysilane. These materials have greater thermal stability than the gamma-substituted, but marginally lower than phenyltrimethoxysilane.


2014 ◽  
Vol 1035 ◽  
pp. 325-329
Author(s):  
Yi Zhou ◽  
Xiao Ping Wang ◽  
Wen Yi Li ◽  
Hui Li ◽  
Ming Tian ◽  
...  

Coaxial nanocomposites were prepared by in–situ chemical polymerization of 4– dibromomethyl–2,5–2–octyloxy phenylene in the presence of multiwall carbon nanotubes. The morphology, microstructure and thermal and electrochemical properties of the resulting nanocomposites were investigated by scanning electron microscopy, Fournier infrared spectroscopy, thermal gravimetric analysis and cyclic voltammetry. The results indicated that the nanocomposites with uniform core-shell structure exhibited higher thermal stability than neat poly (phenylene vinylene). Furthermore, energy storage ability of these coaxial nanocomposites as electrode materials for supercapacitor was evaluated.


2011 ◽  
Vol 391-392 ◽  
pp. 18-22
Author(s):  
Zheng Jin ◽  
Dong Yu Zhao ◽  
Bo Hong Li ◽  
Xiao Min Ren ◽  
Shan Tao Yan ◽  
...  

The purpose of this paper is to develop feasible composite electrodes with a long cycle life and large specific capacitance and to investigate optimal ratio between aniline and carbon aerogels (CA) materials. The characterization of the composite electrode materials was studied by using scanning electron microscopy (SEM), electrochemical impedance spectroscopy, cyclic voltammetry (CV) and the constant charge-discharge. The specific capacitance of the composite electrode materials, measured using cyclic voltammetry at scan rate of 1mV•s-1, was found to be 1139.66F•g-1. For a simple supercapcitor, the highest specific capacitance (127.53 F•g-1 at 30mA) is obtained at ratio between aniline and CA is 1:4.


2012 ◽  
Vol 1388 ◽  
Author(s):  
Punya A. Basnayaka ◽  
Farah Alvi ◽  
Manoj K. Ram ◽  
Robert Tufts ◽  
Ashok Kumar

ABSTRACTThe effect of two substituent groups, ortho-methoxy (-OCH3) and methyl (-CH3) in aniline, have been studied for supercapacitor applications. The polyaniline (PANI), poly (o-anisidine) (POA) and poly (o-toluidine) (POT) have been synthesized by oxidative polymerization method, and characterized by Cyclic Voltammetry (CV), UV–visible spectroscopy, Raman spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. The specific capacitance, charging/discharging and electrochemical impedance characteristics of the supercapacitor fabricated using PANI, POA, as well as POT electrodes are evaluated in 2M H2SO4 electrolytic media. The highest specific capacitance of 400 F/g is calculated for PANI, whereas, POA and POT have exhibited 360 F/g and 325 F/g capacitance in supercapacitor studies.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 392 ◽  
Author(s):  
Kannadasan Thiagarajan ◽  
Thirugnanam Bavani ◽  
Prabhakarn Arunachalam ◽  
Seung Jun Lee ◽  
Jayaraman Theerthagiri ◽  
...  

NiMoO4/g-C3N4 was fabricated by a hydrothermal method and used as an electrode material in a supercapacitor. The samples were characterized by XRD, FTIR, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to study the physical and structural properties of the as-prepared NiMoO4/g-C3N4 material. The electrochemical responses of pristine NiMoO4 and the NiMoO4/g-C3N4 nanocomposite material were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). From the CD studies, the NiMoO4/g-C3N4 nanocomposite revealed a higher maximum specific capacitance (510 Fg−1) in comparison to pristine NiMoO4 (203 Fg−1). In addition, the NiMoO4/g-C3N4 composite electrode material exhibited high stability, which maintained up to 91.8% capacity even after 2000 charge-discharge cycles. Finally, NiMoO4/g-C3N4 was found to exhibit an energy density value of 11.3 Whkg−1. These findings clearly suggested that NiMoO4/g-C3N4 could be a suitable electrode material for electrochemical capacitors.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7393
Author(s):  
Linyue Tong ◽  
Laura A. Sonnenberg ◽  
Wei Wu ◽  
Steven M. Boyer ◽  
Maggie T. Fox ◽  
...  

Composite porous supercapacitor electrodes were prepared by growing poly(3,4-ethylenedioxythiophene) (PEDOT) on graphite nanoplatelet- or graphene nanoplatelet-deposited open-cell polyurethane (PU) sponges via a vapor phase polymerization (VPP) method. The resulting composite supercapacitor electrodes exhibited great capacitive performance, with PEDOT acting as both the conductive binder and the active material. The chemical composition was characterized by Raman spectroscopy and the surface morphology was characterized by scanning electron microscopy (SEM). Cyclic voltammetry (CV), charge-discharge (CD) tests and electrochemical impedance spectroscopy were utilized to study the electrical performance of the composite electrodes produced in symmetrically configured supercapacitor cells. The carbon material deposited on PU substrates and the polymerization temperature of PEDOT affected significantly the PEDOT morphology and the electrical properties of the resulting composite sponges. The highest areal specific capacitance 798.2 mF cm−2 was obtained with the composite sponge fabricated by VPP of PEDOT at 110 °C with graphene nanoplatelet-deposited PU sponge substrate. The capacitance retention of this composite electrode was 101.0% after 10,000 charging–discharging cycles. The high flexibility, high areal specific capacitance, excellent long-term cycling stability and low cost make these composite sponges promising electrode materials for supercapacitors.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2176
Author(s):  
Deepa Guragain ◽  
Sunil Karna ◽  
Jonghyun Choi ◽  
Romakanta Bhattarai ◽  
Tej P. Poudel ◽  
...  

In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.


2019 ◽  
Vol 79 ◽  
pp. 03002 ◽  
Author(s):  
Jie Dong ◽  
Zhenzhong Hou ◽  
Qiuli Zhao ◽  
Qinghao Yang

Nickel-doped manganese dioxide (Ni-MnO2) synthesized by sol-gel method has been used as an electrode material for supercapacitors. The structure and electrochemical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectrometry (EIS). Results showed that the nickel-doped manganese dioxide sample exhibited irregular particles with the diameter of about 500 nm. The crystallographic structure of MnO2 was the poorly crystallized γ-MnO2. The doping ratio had a great influence on the electrochemical properties of the materials. When the molar ratio of Ni/Mn was 3/100, the specific capacitance of Ni-MnO2 achieved to 252.61 F/g. After 2000 charge/discharge cycles, the specific capacitance of Ni-MnO2 was still maintained at 74.36%, which was attributed to its excellent cycling stability.


Sign in / Sign up

Export Citation Format

Share Document