A Comparative Study on Substituted Polyanilines for Supercapacitors

2012 ◽  
Vol 1388 ◽  
Author(s):  
Punya A. Basnayaka ◽  
Farah Alvi ◽  
Manoj K. Ram ◽  
Robert Tufts ◽  
Ashok Kumar

ABSTRACTThe effect of two substituent groups, ortho-methoxy (-OCH3) and methyl (-CH3) in aniline, have been studied for supercapacitor applications. The polyaniline (PANI), poly (o-anisidine) (POA) and poly (o-toluidine) (POT) have been synthesized by oxidative polymerization method, and characterized by Cyclic Voltammetry (CV), UV–visible spectroscopy, Raman spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. The specific capacitance, charging/discharging and electrochemical impedance characteristics of the supercapacitor fabricated using PANI, POA, as well as POT electrodes are evaluated in 2M H2SO4 electrolytic media. The highest specific capacitance of 400 F/g is calculated for PANI, whereas, POA and POT have exhibited 360 F/g and 325 F/g capacitance in supercapacitor studies.

Author(s):  
Syed Shahabuddin ◽  
Norazilawati Muhamad Sarih ◽  
Muhammad Afzal Kamboh ◽  
Hamid Rashidi Nodeh ◽  
Sharifah Mohamad

The present investigation highlights the synthesis of polyaniline (PANI) coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in-situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB) and the anionic dye methyl orange (MO). The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The adsorption efficiencies of graphene oxide (GO), PANI homopolymer and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt% SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO respectively, in a very short duration of time.


2011 ◽  
Vol 109 ◽  
pp. 174-177 ◽  
Author(s):  
Yu Li Shi ◽  
Qi Zhou ◽  
Li Yun Lv ◽  
Wang Hong

A facile method for the synthesis of silver nanoparticles (NPs) has been developed by using sodium phosphate (Na3PO4) as stabilizing agents and glucose the reducing agent, respectively. The obtained silver NPs have been characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and transmission electron microscopy (TEM). It was found that in the presence of sodium phosphate, silver NPs with different morphologies and sizes were obtained. The formation mechanism of diverse silver NPs was studied preliminarily.


2011 ◽  
Vol 356-360 ◽  
pp. 524-528 ◽  
Author(s):  
Chun Ling Yu ◽  
Rui Xue Wu ◽  
Ying Huan Fu ◽  
Xiao Li Dong ◽  
Hong Chao Ma

A polyaniline supported titanium dioxide photocatalyst was prepared by an impregnation-hydrothermal process and characterized by powder X-ray diffraction, transmission electron microscopy and UV-visible spectroscopy. It was found that the TiO2 nanoparticles were well dispersed on the surface of the polyaniline and the photocatalyst has a stronger absorption compared with that of pure TiO2 over the whole of the visible spectrum. The photocatalyst exhibited higher photocatalytic activity than pure TiO2 for the photodegradation of solutions of the anthraquinone dye, reactive brilliant blue KN-R, under visible light irradiation.


2013 ◽  
Vol 749 ◽  
pp. 499-502
Author(s):  
Yang He Luo ◽  
Ji Shun Li ◽  
Wen Qing Yin ◽  
Ai Hui Liang

In the presence of stabilizer of citrate and 10 nm gold nanoparticles (AuNPs) at 90 °C temperature, stable AucoreAgshell nanosol was prepared by reduction of AgNO3 by citrate. It was characterized by UV-visible spectroscopy, resonance Rayleigh scattering (RRS) spectroscopy, and transmission electron microscopy. Results showed that the nanosol exhibited a RRS and surface Plasmon resonance (SPR) effect and the particle size is 20 nm.


2015 ◽  
Vol 1796 ◽  
pp. 1-6 ◽  
Author(s):  
Belete Legesse ◽  
Jae-Young Cho ◽  
Rachel L. Beingessner ◽  
Takeshi Yamazaki ◽  
Hicham Fenniri

ABSTRACTRosette nanotubes (RNTs) are tubular architectures generated through the hierarchical self-assembly of the guanine-cytosine (G∧C) motif 1 or 2 (Figure 1). Motif 2 differs from 1 by the substitution at the N-atom in the G-ring with a C-atom as shown in red. In this paper, we prepare a new tricyclic G∧C base 3 from a functionalized derivative of 2 and demonstrate its self-assembly into fluorescent helical RNTs in N,N-dimethylformamide (DMF). The self-assembly and fluorescent properties of RNTs 3 were established using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-visible spectroscopy.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Huda Abdullah ◽  
Norshafadzila Mohammad Naim ◽  
Noor Azwen Noor Azmy ◽  
Aidil Abdul Hamid

PANI-Ag-Cu nanocomposite thin films were prepared by sol-gel method and deposited on the glass substrate using spin coating technique. Polyaniline was synthesized by chemical oxidative polymerization of aniline monomer in the presence of nitric acid. The films were characterized using XRD, FTIR, and UV-Visible spectroscopy. The performance of the sensor was conducted using electrochemical impedance spectroscopy to obtain the change in impedance of the sensor film before and after incubation withE. colibacteria in water. The peaks in XRD pattern confirm the presence of Ag and Cu nanoparticles in face-centered cubic structure. FTIR analysis shows the stretching of N–H in the polyaniline structure. The absorption band from UV-Visible spectroscopy shows high peaks between 400 nm and 500 nm which indicate the presence of Ag and Cu nanoparticles, respectively. Impedance analysis indicates that the change in impedance of the films decreases with the presence ofE. coli. The sensitivity onE. coliincreases for the sample with high concentration of Cu.


2016 ◽  
Vol 57 ◽  
pp. 58-66 ◽  
Author(s):  
Dattu Singh ◽  
Vandana Rathod ◽  
Ashish Kumar Singh ◽  
Manzoor Ul Haq ◽  
Jasmine Mathew ◽  
...  

Biological method is considered as eco-friendly and reliable process for the synthesis of silver nanoparticles (AgNps) in the field of nanotechnology due to its tremendous applications in various fields. In this study we have isolated a total of twelve endophytic fungi from leaves ofCurcumalonga(turmeric) andCatharanthusroseusout of which six endophytic fungi showed their ability to synthesized AgNps from silver nitrate (AgNO3)solution which splits into a positive silver ion (Ag+) and a negative nitrate ion (NO3-) in order to turn the silver ions into solid silver (Ago). Of the six positive endophytic fungi VRD2 showed good and encouraging results and was identified asPenicillium spinulosumVRD2. UV-Visible Spectroscopy confirms the AgNps showing maximum peak at 425nm implying the bioreduction of AgNO3. Transmission Electron Microscopy (TEM) revealed the particle are spherical and well dispersed without agglomeration size ranging from 25-30nm.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 546 ◽  
Author(s):  
Milan Babu Poudel ◽  
Changho Yu ◽  
Han Joo Kim

We report a polyaniline-wrapped, manganese-doped titanium oxide (PANi/Mn-TiO2) nanoparticle composite for supercapacitor electrode and photocatalytic degradation. The PANi/Mn-TiO2 nanoparticles were synthesized using a solvothermal process, followed by oxidative polymerization of aniline. The structural properties of studied materials were confirmed by XRD, FTIR, HRTEM, FESEM, and UV visible spectroscopy. The as-prepared PANi/Mn-TiO2 nanoparticles revealed admirable electrochemical performance with a specific capacitance of 635.87 F g−1 at a current density of 1 A g−1 with a notable life cycle retention of 91% after 5000 charge/discharge cycles. Furthermore, the asymmetric cell with PANi/Mn-TiO2 as a positive electrode exhibited energy density of 18.66 W h kg−1 with excellent stability. Moreover, the PANi/Mn-TiO2 had promising photocatalytic activity for methylene blue degradation. The improved performance of PANi/Mn-TiO2 nanoparticles is attributed to the well-built synergetic effect of components that lead to significant reduction of band gap energy and charge transfer resistance, as revealed by UV visible spectroscopy and electrochemical impedance spectroscopy.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 533
Author(s):  
Fan Yang ◽  
Xichuan Liu ◽  
Rui Mi ◽  
Lei Yuan ◽  
Xi Yang ◽  
...  

A novel facile process for fabrication of amorphous MnO2/bamboo charcoal monolith hybrids (MnO2/BC) for potential supercapacitor applications using γ-irradiation methods is described. The structural, morphological and electrochemical properties of the MnO2/BC hybrids have been investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The combination of BC (electrical double layer charge) and MnO2 (pseudocapacitance) created a complementary effect, which enhanced the specific capacitance and good cyclic stability of the MnO2/BC hybrid electrodes. The MnO2/BC hybrids showed a higher specific capacitance (449 F g−1 at the constant current density of 0.5 A g−1 over the potential range from –0.2 V to 0.8 V), compared with BC (101 F g−1) in 1 M of Na2SO4 aqueous electrolyte. Furthermore, the MnO2/BC hybrid electrodes showed superior cycling stability with 78% capacitance retention, even after 10,000 cycles. The experimental results demonstrated that the high performance of MnO2/BC hybrids could be a potential electrode material for supercapacitors.


2018 ◽  
Vol 765 ◽  
pp. 44-48 ◽  
Author(s):  
Angeline F. Maceda ◽  
Johnny Jim S. Ouano ◽  
Mar Christian O. Que ◽  
Blessie A. Basilia ◽  
Melchor J. Potestas ◽  
...  

This work controls the absorption of gold nanoparticles (GNPs) via green synthesis utilizingSargassumcrassifoliumextract. The amount of seaweed extract acts as both reducing (from Au+to Au0) and capping agent. TheS.crassifoliumextract is mainly composed of biomolecules such as protein and phenolic compounds which are responsible for the synthesis of GNPs. The synthesized GNPs were characterized using UV-Visible spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM). UV-Vis spectra revealed peaks around 505 nm to 544 nm which corresponds to the Surface Plasmon Resonance (SPR) of GNPs. FTIR spectroscopy analysis showed peak at 825 cm-1and 1144 cm-1which corresponds to the signature peaks of GNPs. Polydisperse GNPs with varied sizes (between 5 nm to 300 nm) were further confirmed by TEM analysis.


Sign in / Sign up

Export Citation Format

Share Document