Poly(3-hexylthiophene) End-Functionalization via Quenching Resulting in Heteroatom-Bond Formation

2016 ◽  
Vol 69 (7) ◽  
pp. 701 ◽  
Author(s):  
Lauren J. Kang ◽  
Christine K. Luscombe

End-functionalized poly(3-hexylthiophene) (P3HT) has contributed to continued advancements in conjugated polymer applications, especially within organic electronics. P3HT synthesized using Kumada catalyst-transfer polymerization (KCTP) has many favourable attributes such as controlled molecular weight, high regioregularity, and narrow dispersity. With the addition of reactive end-groups, P3HT plays an important role in advancing the development of hybrid materials and preparation of block copolymers. Exploring methods of end-functionalization that result in heteroatom-bond formation, giving a non-carbon atom bonded to the terminal thiophene, could help control and understand the p–n junction of hybrid materials. This research highlight focuses on the development of a novel and facile way of end-functionalizing P3HT with chalcogens.

1993 ◽  
Vol 58 (11) ◽  
pp. 2574-2582 ◽  
Author(s):  
Jaroslav Stehlíček ◽  
Rudolf Puffr

Poly(2,6-dimethyl-1,4-phenylene oxide)-poly(6-hexanelactam) diblock copolymers were prepared from low-molecular weight poly(2,6-dimethyl-1,4-phenylene oxide) by transforming its phenolic end groups via the reaction with 2,4-tolylene diisocyanate and 6-hexanelactam to polymeric initiators and the subsequent anionic polymerization of 6-hexanelactam. The polymerization of 6-hexanelactam was carried out in bulk or toluene solution. The content of the 6-hexanelactam homopolymer was estimated by TLC showing that the pure diblock copolymer can be prepared in toluene. The reason for relatively low yields is discussed.


2004 ◽  
Vol 858 ◽  
Author(s):  
Jian Chen ◽  
Rajagopal Ramasubramaniam ◽  
Haiying Liu

ABSTRACTThe understanding of the conformational interaction between conjugated polymers and carbon nanotubes in solution is essential to develop the applications of carbon nanotubes, particularly conjugated polymer-carbon nanotube hybrid materials. The visible absorption spectroscopic study shows that curved carbon nanotube surfaces can induce the planarization of individual conjugated polymers such as poly(p-phenyleneethynylene)s and poly(3-alkylthiophene)s in solution. The impact of nanotube surface quality on the interaction between carbon nanotubes and conjugated polymers is investigated.


2000 ◽  
Vol 72 (1-2) ◽  
pp. 67-72 ◽  
Author(s):  
Keith J. Watson ◽  
Jin Zhu ◽  
SonBinh T. Nguyen ◽  
Chad A. Mirkin

Ring-opening metathesis polymerization was used to modify organic soluble gold nanoparticles with redox-active polymers. A gel-permeation chromatography study revealed that each nanoparticle is modified with approximately 11 polymer chains. Electrochemical studies of nanoparticles modified with block copolymers of two different redox-active groups revealed that each monomer is electrochemically accessible, while no current rectification was observed.


1965 ◽  
Vol 38 (2) ◽  
pp. 431-449
Author(s):  
Eugene P. Goldberg

Abstract Polycarbonate block copolymers were prepared by phosgenating pyridine solutions of polyether glycol-bisphenol-A mixtures. Copolycarbonates derived from poly(oxyethylene) glycols (Carbowaxes) were studied in detail for property-structure effects as a function of glycol molecular weight (1000–20,000) and copolymer composition (5–70 weight per cent or 0.3–10.0 mole per cent of a 4000 molecular weight glycol). Remarkable strength (>7000 psi) and snappy elasticity (>90 per cent immediate recovery) were observed at poly(oxyethylene) block concentrations greater than 3 mole per cent. These thermoplastic elastomers also exhibited high softening temperatures (>180° C) and tensile elongations up to about 700 per cent. Both Tg and softening temperature varied linearly with comonomer mole ratio over the composition range studied, with Tg displaying much greater polyether concentration sensitivity. It is suggested that the observed property effects result to a large extent from the variation in poly(bisphenol-A carbonate) block length that accompanies the changing of copolymer composition. An initial increase in flexural modulus (stiffness) was observed at low polyether concentrations (0–1 mole per cent). This phenomenon is considered to be related to similar modulus effects found in plasticized rigid thermoplastics at low plasticizer concentrations. A moderate degree of molecular order, due to bisphenol carbonate segments rather than the normally crystalline polyether, was detected by x-ray analysis. Elastomeric carbonate-carboxylate tetrapolymers were also prepared by partial replacement of carbonate with isophthalate, terephthalate or adipate linkages in polyether-bisphenol systems. The dramatic softening temperature depression observed in this class of polymers is attributed to the disruption of long bisphenol carbonate block sequences that exist in the simpler polyether glycol-bisphenol carbonate copolymers.


2012 ◽  
Vol 512-515 ◽  
pp. 2127-2130
Author(s):  
Li Huo ◽  
Cai Xia Dong

The mechanical properties were investigated of a series of PA-PEG thermalplastic elastomer based on PA1010 and polytetramethylene glycol (PEG) with varying hard and soft segment content. Dynamic mechanical measurements of these polymers have carried out over a wide range of temperatures. The block copolymers exhibit three peaks, designated as α, β and γ in the tanδ-temperature curve. The α transition shifts to higher temperature with increasing hard block molecular weight. However, at a constant hard molecular weight, the α transition shifts to higher temperature and the damping increases on increasing the soft segment molecular weight. DMA results show that the block copolymers exhibit a microphase separation structure and both soft and hard segments were found to be crystallizable. The degree of phase separation increases with increasing hard block molecular weight.


2016 ◽  
Vol 49 (11) ◽  
pp. 2478-2488 ◽  
Author(s):  
Yao Liu ◽  
Volodimyr V. Duzhko ◽  
Zachariah A. Page ◽  
Todd Emrick ◽  
Thomas P. Russell

Sign in / Sign up

Export Citation Format

Share Document