Self-Assembly of an Amphiphilic OEG-Linked Glutamide Lipid

2017 ◽  
Vol 70 (1) ◽  
pp. 52 ◽  
Author(s):  
Shuo Wang ◽  
Youguo Zhang ◽  
Qiang Li ◽  
Rongqin Sun ◽  
Lin Ma ◽  
...  

Amphiphilic peptides with or without oligoethylene glycol (OEG) chains based on 3,4-bis(benzyloxy)benzoic-linked glutamide were designed and their self-assembly was investigated. It was found that the amphiphilic peptide 3 with OEG chains could not only form stable gels in a wide range of solvents, but also showed better solubility in solvents than those without OEG chains. Fibrillar and nanotube structures were found in the gels formed and the width of the fibres could be tuned with added water content. The UV-vis and XRD results suggested that the driving forces for the peptide self-assembly were mainly intermolecular π–π and hydrogen-bonding interactions. These results provide a deeper understanding of the self-assembly mechanism and size control of nanofibrils formed by an OEG-based amphiphilic peptide.

Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 202 ◽  
Author(s):  
Meiwen Cao ◽  
Yang Shen ◽  
Yu Wang ◽  
Xiaoling Wang ◽  
Dongxiang Li

A novel type of self-assembling peptides has been developed by introducing the basic elastomeric β-turn units of elastin protein into the amphiphilic peptide molecules. The self-assembly behaviors of such peptides are affected by the overall molecular hydrophobicity, charge distribution and temperature. The molecules with higher hydrophobicity exhibit better self-assembling capability to form long fibrillar nanostructures. For some peptides, the temperature increase can not only promote the self-assembly process but also change the self-assembly routes. The self-assembly of the peptides with two charges centralized on one terminal show higher dependence on temperature than the peptides with two charges distributed separately on the two terminals. The study probes into the self-assembly behaviors of short elastin-like peptides and is of great help for developing novel self-assembling peptides with thermo sensitivity.


2004 ◽  
Vol 2004 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Mourad Elhabiri ◽  
Josef Hamacek ◽  
Jean-Claude G. Bünzli ◽  
Anne-Marie Albrecht-Gary

2021 ◽  
Vol 22 (17) ◽  
pp. 9634
Author(s):  
Moran Aviv ◽  
Dana Cohen-Gerassi ◽  
Asuka A. Orr ◽  
Rajkumar Misra ◽  
Zohar A. Arnon ◽  
...  

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling. A minimal alteration of the chemical environment could cause a significant impact. In this context, we report the effects of modifying the position of a single atom on the properties and kinetics of the self-assembly process. A combination of experimental and computational methods, used to investigate double-fluorinated Fmoc-Phe derivatives, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe, reveals the unique effects of modifying the position of a single fluorine on the self-assembly process, and the physical properties of the product. The presence of significant physical and morphological differences between the two derivatives was verified by molecular-dynamics simulations. Analysis of the spontaneous phase-transition of both building blocks, as well as crystal X-ray diffraction to determine the molecular structure of Fmoc-3,4F-Phe, are in good agreement with known changes in the Phe fluorination pattern and highlight the effect of a single atom position on the self-assembly process. These findings prove that fluorination is an effective strategy to influence supramolecular organization on the nanoscale. Moreover, we believe that a deep understanding of the self-assembly process may provide fundamental insights that will facilitate the development of optimal amino-acid-based low-molecular-weight hydrogelators for a wide range of applications.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e45374 ◽  
Author(s):  
Sushanth Gudlur ◽  
Pinakin Sukthankar ◽  
Jian Gao ◽  
L. Adriana Avila ◽  
Yasuaki Hiromasa ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4387 ◽  
Author(s):  
Vladyslav Savchenko ◽  
Markus Koch ◽  
Aleksander S. Pavlov ◽  
Marina Saphiannikova ◽  
Olga Guskova

In this paper, the columnar supramolecular aggregates of photosensitive star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core and azobenzene arms are analyzed theoretically by applying a combination of computer simulation techniques. Without a light stimulus, the azobenzene arms adopt the trans-state and build one-dimensional columns of stacked molecules during the first stage of the noncovalent association. These columnar aggregates represent the structural elements of more complex experimentally observed morphologies—fibers, spheres, gels, and others. Here, we determine the most favorable mutual orientations of the trans-stars in the stack in terms of (i) the π – π distance between the cores lengthwise the aggregate, (ii) the lateral displacements due to slippage and (iii) the rotation promoting the helical twist and chirality of the aggregate. To this end, we calculate the binding energy diagrams using density functional theory. The model predictions are further compared with available experimental data. The intermolecular forces responsible for the stability of the stacks in crystals are quantified using Hirshfeld surface analysis. Finally, to characterize the self-assembly mechanism of the stars in solution, we calculate the hydrogen bond lengths, the normalized dipole moments and the binding energies as functions of the columnar length. For this, molecular dynamics trajectories are analyzed. Finally, we conclude about the cooperative nature of the self-assembly of star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core in aqueous solution.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 285 ◽  
Author(s):  
Li Wang ◽  
Coucong Gong ◽  
Xinzhu Yuan ◽  
Gang Wei

Biomolecular self-assembly provides a facile way to synthesize functional nanomaterials. Due to the unique structure and functions of biomolecules, the created biological nanomaterials via biomolecular self-assembly have a wide range of applications, from materials science to biomedical engineering, tissue engineering, nanotechnology, and analytical science. In this review, we present recent advances in the synthesis of biological nanomaterials by controlling the biomolecular self-assembly from adjusting internal interactions and external stimulations. The self-assembly mechanisms of biomolecules (DNA, protein, peptide, virus, enzyme, metabolites, lipid, cholesterol, and others) related to various internal interactions, including hydrogen bonds, electrostatic interactions, hydrophobic interactions, π–π stacking, DNA base pairing, and ligand–receptor binding, are discussed by analyzing some recent studies. In addition, some strategies for promoting biomolecular self-assembly via external stimulations, such as adjusting the solution conditions (pH, temperature, ionic strength), adding organics, nanoparticles, or enzymes, and applying external light stimulation to the self-assembly systems, are demonstrated. We hope that this overview will be helpful for readers to understand the self-assembly mechanisms and strategies of biomolecules and to design and develop new biological nanostructures or nanomaterials for desired applications.


2019 ◽  
Vol 23 (04n05) ◽  
pp. 526-533 ◽  
Author(s):  
Mariana Hamer ◽  
Rolando M. Caraballo ◽  
Peter J. Eaton ◽  
Craig Medforth

Porphyrins and metalloporphyrins are one of the most widely studied platforms for the construction of supramolecular structures. These compounds have an extended aromatic system that allows [Formula: see text]–[Formula: see text] stacking interactions which, together with hydrogen bonds, electrostatic forces and the formation of inter-metallic complexes arising from peripheral groups, offer a versatile platform to control the self-assembly mechanism. In this work, we present the study of nanostructures formed by self-assembly of the water-soluble porphyrins meso-tetra([Formula: see text]-methyl-4-pyridyl)porphyrin (TMPyP) and meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) in the presence of hard nanotemplates. Different nanoparticles (silica, gold, and polystyrene), concentrations and synthetic procedures were explored. The obtained materials were characterized by SEM and AFM microscopies, UV-vis absorption spectroscopy and dynamic light scattering measurements. A clear modification of the SiO2 NP surface roughness using one-pot synthesis was observed. The results were variable depending on the porphyrin–surface interactions and concentrations used. At lower porphyrin concentrations, a shift of the Soret band was observed, while at higher concentrations, free NS were formed. This reflects a competition between surface and solution directed self-assembly.


RSC Advances ◽  
2014 ◽  
Vol 4 (105) ◽  
pp. 60741-60748 ◽  
Author(s):  
Naresh Thota ◽  
Yijia Ma ◽  
Jianwen Jiang

Molecular dynamics simulation is reported for the self-assembly of short amphiphilic peptides FmDn and FmKn.


RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 100072-100078 ◽  
Author(s):  
Lijun Liang ◽  
Li-Wei Wang ◽  
Jia-Wei Shen

Understanding the self-assembly mechanisms of tetra-peptides from Aβ-peptides into different nanostructures.


Sign in / Sign up

Export Citation Format

Share Document