Ligand substitution at five-coordinate copper(II) centres by cyanate, chloride and bromide ions

1980 ◽  
Vol 33 (6) ◽  
pp. 1381 ◽  
Author(s):  
JH Coates ◽  
PR Collins ◽  
SF Lincoln

The substitution of the aqua[tris{2-(dimethylamino)ethyl}amine]copper(II) ion by cyanate, chloride and bromide ions has been studied in aqueous solution by static and stopped-flow spectrophoto-metric techniques. This process is unusually slow for ligand substitution at a copper(II) centre and appears to proceed through an interchange mechanism in which the copper(II)-aqua ligand bond makes a major contribution to the transition state energetics.

1980 ◽  
Vol 35 (9) ◽  
pp. 1096-1103 ◽  
Author(s):  
Matthias Kretschmer ◽  
Lutwin Labouvie ◽  
Karl-W. Quirin ◽  
Helmut Wiehn ◽  
Ludwig Heck

Acidity constants of ammine complexes of tetravalent platinum in aqueous solutions have been determined by a spectrophotometric method at very low ionic strengths and extrapolated to zero ionic strength. Temperature variations of pK-values (25 °C and 50 °C) yield thermodynamic parameters for two successive deprotonation steps of hexaammineplatinum(IV), pentaamminechloroplatinum(IV), and tris(ethylenediamine)pla- tinum(IV) complexes and for the deprotonation of pentaammineaquacobalt(III) ion.The enthalpy changes for the first and second steps are similar and range from 50 to 75 kJ/mole while for the aqua ligand of Co(III) 33 kJ/mole are found. The very large dif­ference in the entropy changes (about 70 to 80 J/K mole for the first step and -10 to + 20 J/K mole for the second step) is interpreted by a model of solvation change. The primary hydration sphere of strongly oriented and immobilized water dipoles around the highly charged complex cation is transformed to a hydrogen-bonded solvation sheath when the electric field of the complex is weakened upon release of the first proton.


1966 ◽  
Vol 19 (8) ◽  
pp. 1365 ◽  
Author(s):  
RH Smith ◽  
IR Wilson

Initial rates of reaction for the above oxidation have been measured by a stopped-flow conductance method. Between pH 2 and 3.6, the initial rate of reaction, R, is given by the expression R{[HSO5-]+[SCN-]} = {kb+kc[H+]}[HSO5-]0[SCN-]20+ka[H+]-1[HSO5]20[SCN-]0 As pH increases, there is a transition to a pH-independent rate, first order in each thiocyanate and peroxomonosulphate concentrations.


1986 ◽  
Vol 64 (3) ◽  
pp. 442-448 ◽  
Author(s):  
E. Buncel ◽  
R. Kumar ◽  
A. R. Norris

A number of methylmercurated complexes of 6-mercaptopurine riboside and 2-amino-6-mercaptopurine riboside (6-MNucH2) containing S-bound CH3Hg(II) in neutral and cationic complexes (as in [CH3Hg(6-MNucH)] and [CH3Hg(6-MNucH2)]NO3), S- and N-bound CH3Hg(II) (as in [(CH3Hg)2(6-MNucH)]NO3), and S-, N-, C-bound CH3Hg(II) (as in [(CH3Hg)3(6-MNuc)]NO3) have been prepared in aqueous solution at appropriate pH and mole ratios of the constituents. The complexes were characterized by means of 1H and 13C nmr and ir spectroscopy and elemental analysis. Formation of C-bound methylmercurated species extends our previous results obtained with xanthosine, inosine, and imidazole derivatives, and substantiates our proposal that activation through electrophilic coordination at N(7) is a requirement for C(8)—H abstraction. 2J(1H–199Hg) coupling constants, measured in (CD3)2SO for a number of CH3Hg(II) complexes of N-, S-, and C-donor heterocyclic ligands, including the 6-mercaptopurine riboside of the present study, correlate well with the 1J(13C–199Hg) coupling constants, according to 1J = 8.4602J − 155.6. The significance of this correlation in terms of the strength of the Hg–ligand bond is considered. The results could provide insight into the apparent selectivity of binding of CH3Hg(II) by bio-ligands, as well as in the design of chemotherapeutic agents for the treatment of methylmercury poisoning.


Author(s):  
Robert B. Jordan

In ligand substitution reactions, one or more ligands around a metal ion are replaced by other ligands. In many ways, all inorganic reactions can be classified as either substitution or oxidation-reduction reactions, so that substitution reactions represent a major type of inorganic process. Some examples of substitution reactions follow: The operational approach was first expounded in 1965 in a monograph by Langford and Gray. It is an attempt to classify reaction mechanisms in relation to the type of information that kinetic studies of various types can provide. It delineates what can be said about the mechanism on the basis of the observations from certain types of experiments. The mechanism is classified by two properties, its stoichiometric character and its intimate character. The Stoichiometric mechanism can be determined from the kinetic behavior of one system. The classifications are as follows: 1. Dissociative (D): an intermediate of lower coordination number than the reactant can be identified. 2. Associative (A): an intermediate of larger coordination number than the reactant can be identified. 3. Interchange (I): no detectable intermediate can be found. The intimate mechanism can be determined from a series of experiments in which the nature of the reactants is changed in a systematic way. The classifications are as follows: 1. Dissociative activation (d): the reaction rate is more sensitive to changes in the leaving group. 2. Associative activation (a): the reaction rate is more sensitive to changes in the entering group. This terminology has largely replaced the SN1, SN2 and so on type of nomenclature that is still used in physical organic chemistry. These terminologies are compared and further explained as follows: Dissociative [D = SN1 (limiting)]: there is definite evidence of an intermediate of reduced coordination number. The bond between the metal and the leaving group has been completely broken in the transition state without any bond making to the entering group. Dissociative interchange (1d= SN1): there is no definite evidence of an intermediate. In the transition state, there is a large degree of bond breaking to the leaving group and a small amount of bond making to the entering group.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 950-959 ◽  
Author(s):  
Oswald S Tee ◽  
Michael J Boyd

The effects of cyclodextrins (CDs) on the rate of nucleophilic attack on 1- and 2-naphthyl acetates (1-NA and 2-NA) in aqueous solution have been investigated. Analysis of the variation of the pseudo-first-order rate constants with [nucleophile] and [CD] affords rate constants for reaction of the nucleophiles with free ester (kN) and with ester bound to the CD (kcN). The reaction of 1-NA and 2-NA with the trifluoroethoxide anion is slowed down by β-CD as the ratios kcN/kN are 0.11 and 0.30, respectively. For reaction with the anion of 2-mercaptoethanol in the presence of α-CD, β-CD, "hydroxypropyl-β-CD" (hp-β-CD) and γ-CD, the reactivity ratios kcN/kN vary between 0.04 and 2.4, ranging from strong retardation to modest catalysis; the retardations arise with β-CD and hp-β-CD, which bind the esters strongly. By contrast, the attack of primary alkylamines is generally accelerated, and in many cases substantially so. For the aminolysis of 1-NA in the presence of β-CD, values of kcN/kN range from 7 to 460, assuming that free amine reacts with CD-bound ester. Alternatively, if the CD-catalyzed reaction involves free ester reacting with CD-bound amine, with rate constant kNc, the ratios kNc/kN vary from 43 to 140. Either way, there is appreciable catalysis of the aminolysis of 1-NA by β-CD. For the aminolysis of 2-NA, the effects are less dramatic: the ratios kcN/kN range from 0.19 to 17, and values of kNc/kN vary from 17 to 110. The reaction of 1-NA with n-hexylamine is also catalyzed by γ-CD. The variations of kinetic parameters with alkylamine chain length suggest that the CD-catalyzed aminolysis basically takes place by the attack of CD-bound amine on the free ester. However, there must be some stabilizing interactions between the aryl group of the ester and the CD during the reaction, since the transition state stabilization is different for 1-NA and 2-NA, as well for other esters.Key words: aminolysis, catalysis, cyclodextrin, ester cleavage, kinetics.


Sign in / Sign up

Export Citation Format

Share Document