Impact of crop-topping and swathing on the viable seed production of wild radish (Raphanus raphanistrum)

2009 ◽  
Vol 60 (7) ◽  
pp. 667 ◽  
Author(s):  
Michael J. Walsh ◽  
Stephen B. Powles

Crop-topping, the practice of applying non-selective herbicides at crop maturity, has proved to be an effective management technique in preventing the input of seed into the seedbank for some annual weed species of southern Australian crop production systems. However, the efficacy of this practice on the dominant broad-leaf weed of these systems, wild radish, is not well understood. These studies investigated the effect of crop-topping and swathing on the viable seed production of wild radish. Crop-topping with either glyphosate or sprayseed (paraquat 135 g/L + diquat 115 g/L) can provide large reductions of 80–90% in viable seed production of wild radish plants present in crops at the end of the growing season. However, the efficacy of this practice was found to be highly variable and therefore, cannot be relied upon to consistently produce these large reductions in seed numbers. Similarly, swathing also produced large reductions in viable seed production but results from this practice were even less consistent than crop-topping treatments. For all treatments, early application timings of growth stage 6.5 or earlier, were optimum for targeting wild radish seed production. However, these treatment timings also resulted in large crop yield losses of ~30%. To preserve at least 90% of crop yield, crop-topping and swathing treatments need to be delayed until wild radish growth stage 8.5, with expected reductions in seed numbers of up to 70%. However, in high-density infestations the need to preserve grain yield will be less important than preventing substantial inputs of wild radish seed into the seedbank.

Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 749-756 ◽  
Author(s):  
Seyed V. Eslami ◽  
Gurjeet S. Gill ◽  
Bill Bellotti ◽  
Glenn McDonald

Wild radish is a major weed of field crops in southern Australia. The effects of various densities of wild radish and wheat on the growth and reproductive output of each other were investigated in field studies in 2003 and 2004. The experiments were established as a factorial combination of wheat (0, 100, 200, and 400 plants m−2) and wild radish (0, 15, 30, and 60 plants m−2) densities. The effect of wild radish density on wheat yield loss and wild radish seed production were described with a rectangular hyperbola model. The presence of wild radish in wheat reduced aboveground dry matter, leaf-area index (LAI), and grain yield of wheat, and the magnitude of this reduction was dependent on weed density. Increasing the density of wheat substantially reduced the adverse effects of wild radish on wheat. As crop density increased, wild radish dry matter, LAI, and seed production per unit area decreased. The maximum seed production of wild radish was achieved at its highest density (60 plants m−2), and was 43,300 and 61,200 seeds m−2for the first and second year, respectively. The results indicated that higher densities of wheat were able to suppress seed production of this weed species. From a practical viewpoint, this study shows that increased wheat density in the range of 200 to 400 wheat plants m−2can reduce wild radish seed production and also give some reduction in crop yield loss, and could be an important component of an integrated weed management program.


1996 ◽  
Vol 36 (4) ◽  
pp. 437 ◽  
Author(s):  
GR Code ◽  
TW Donaldson

The effect of different cultivation and sowing methods on wild radish (Raphanus raphanistrum L.) density in 4 successive wheat crops was measured in an experiment in north-eastern Victoria. The number of seasons taken for populations to decline below an estimated threshold for economic spraying of wild radish (5-10 plants/m2) was examined. Two herbicide applications in each crop in all but one treatment prevented or significantly reduced wild radish seed production during the experiment. Wheat sown after mouldboard ploughing (MBP) in the first season contained wild radish at 42 plants/m2, before spraying. Densities were significantly higher (P<0.05) when wheat was direct drilled (96 plants/m2), or sown after cultivation to 80 mm (116 plants/m2) or to 50 mm (202 plants/m2). MBP in the first season followed by cultivation to 80 mm or direct drilling in subsequent seasons resulted in wild radish populations below the threshold for economic spraying in the second crop. Cultivation to 80 mm before sowing in the first 2 years, followed by direct drilling in subsequent years resulted in a wild radish population of 6.9 plants/m2 in the third crop. This density was within the range estimated as the threshold for economic spraying. Wild radish densities on treatments cultivated to 50 or 80 mm before sowing, or direct drilled each year, had declined to within or below the threshold for economic spraying by the fourth crop.


Weed Science ◽  
2004 ◽  
Vol 52 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Michael J. Walsh ◽  
Stephen B. Powles ◽  
Brett R. Beard ◽  
Ben T. Parkin ◽  
Sally A. Porter

Populations of wild radish were collected from two fields in the northern Western Australian wheatbelt, where typical herbicide-use patterns had been practiced for the previous 17 seasons within an intensive crop production program. The herbicide resistance status of these populations clearly established that there was multiple-herbicide resistance across many herbicides from at least four modes of action. One population exhibited multiple-herbicide resistance to the phytoene desaturase (PDS)–inhibiting herbicide diflufenican (3.0-fold), the auxin analog herbicide 2,4-D (2.2-fold), and the photosystem II–inhibiting herbicides metribuzin and atrazine. Another population was found to be multiply resistant to the acetolactate synthase–inhibiting herbicides, the PDS-inhibiting herbicide diflufenican (2.5-fold), and the auxin analog herbicide 2,4-D amine (2.4-fold). Therefore, each population has developed multiple-herbicide resistance across several modes of action. The multiple resistance status of these wild radish populations developed from conventional herbicide usage in intensive cropping rotations, indicating a dramatic challenge for the future control of wild radish.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Ci Sun ◽  
Michael B. Ashworth ◽  
Ken Flower ◽  
Martin M. Vila-Aiub ◽  
Roberto Lujan Rocha ◽  
...  

Abstract Harvest weed seed control (HWSC) is a weed management technique that intercepts and destroys weed seeds before they replenish the soil weed seedbank and can be used to control herbicide-resistant weeds in global cropping systems. Wild radish (Raphanus raphanistrum L.) is a problematic, globally distributed weed species that is considered highly susceptible to HWSC as it retains much of its seed on the plant during grain harvest. However, previous studies have demonstrated that R. raphanistrum is capable of adapting its life cycle, in particular flowering time; to allow individuals more time to mature and potentially shed seeds before harvest, thereby evading HWSC interception. This study compared the vegetative growth plus physiological and ecological fitness of an early flowering R. raphanistrum biotype with an unselected genetically related biotype to determine if physiological costs of early flowering exist, when in competition with wheat (Triticum aestivum L.). Early flowering time adaptation in R. raphanistrum did not change the relative growth rate or competitive ability of R. raphanistrum. However, the height of first flower was reduced in the early flowering time-selected population, indicating that this population would retain more pods below the typical harvest cutting height (15 cm) used in HWSC. The presence of wheat competition (160 – 200 plants m-2) increased flowering height in the early flowering time-selected population, which would likely increase the susceptibility of early flowering R. raphanistrum plants to HWSC. Overall, early-flowering adaption in R. raphanistrum is a possible strategy to escape being captured by the HWSC; however, increasing crop competition is likely to be an effective strategy to maintain the effectiveness of HWSC.


1981 ◽  
Vol 21 (112) ◽  
pp. 524 ◽  
Author(s):  
TG Reeves ◽  
GR Code ◽  
CM Piggin

Experiments conducted from 1977 to 1979, at Rutherglen, north-eastern Victoria, investigated seed production, seed longevity, seasonal emergence and phenological development in wild radish (Raphanus raphanistrum L.), a weed of field crops. Seed production of wild radish reached 17 275 seeds/m2; seeds retained viability and germinated over a period of three years. The loss of viability was faster at the soil surface or at 1 cm depth than at 5 or 10 cm. Of 1000 wild radish seeds buried at 1 cm depth, 737 emerged after three years, compared with 367, 167 and 5 at 0.5 and 10 cm, respectively. Phenological development of wild radish was affected by time of planting, and the duration of the period from plant emergence to plant senescence ranged from 5 to 10 months. Temperature appeared to influence development up to flowering, but photoperiod affected the length of flowering. Plants emerging at any time during the year were able to flower and seed successfully. The implications of these findings for control programs are discussed.


Weed Science ◽  
2019 ◽  
Vol 67 (05) ◽  
pp. 539-545 ◽  
Author(s):  
Danica E. Goggin ◽  
Hugh J. Beckie ◽  
Chad Sayer ◽  
Stephen B. Powles

AbstractWild radish (Raphanus raphanistrum L.) is a problematic and economically damaging dicotyledonous weed infesting crops in many regions of the world. Resistance to the auxinic herbicides 2,4-D and dicamba is widespread in Western Australian R. raphanistrum populations, with the resistance mechanism appearing to involve alterations in the physiological response to synthetic auxins and in plant defense. This study aimed to determine whether these alterations cause inhibition in plant growth or reproduction that could potentially be exploited to manage 2,4-D–resistant populations in cropping areas. Therefore, the morphology and seed production of resistant and susceptible populations were compared in an outdoor pot study, with plants grown in the presence and absence of competition by wheat (Triticum aestivum L.). The susceptible and resistant R. raphanistrum populations were equally suppressed by wheat competition, with plant growth and seed production being decreased by approximately 50%. Although resistant populations produced less vegetative biomass than susceptible populations, there was no negative association between resistance and seed production. Therefore, it is unlikely that any nonherbicidal management practices will be more efficacious on 2,4-D–resistant than 2,4-D–susceptible R. raphanistrum populations.


Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


Sign in / Sign up

Export Citation Format

Share Document