Process-based modelling to understand the impact of ryegrass diversity on production and leaching from grazed grass-clover dairy pastures

2013 ◽  
Vol 64 (10) ◽  
pp. 1020 ◽  
Author(s):  
V. O. Snow ◽  
P. N. Smale ◽  
M. B. Dodd

Ecological studies often suggest that natural grasslands with high species diversity will grow more biomass and leach less nitrogen (N). If this diversity effect also applies to fertilised and irrigated pastures with controlled removal of herbage, it might be exploited to design pastures that can assist the dairy industry to maintain production while reducing N leaching losses. The purpose of this study was to test whether pasture mixtures with a high functional diversity in ryegrass traits will confer on the system higher water- and N-use efficiency. The hypothesis was tested using a process-based model in which pasture mixtures were created with varying levels of diversity in ryegrass traits likely to affect pasture growth. Those traits were: the winter- or summer-dominance of growth, the ability of the plant to intercept radiation at low pasture mass, and rooting depth. Pasture production, leaching and water- and N-use efficiency were simulated for management typical of a dairy pasture. We found that the performance of the diverse ryegrass–clover mixtures was more strongly associated with the performance of the individual components than with the diversity across the components. Diverse pasture mixtures may confer other benefits, e.g. pest or disease resistance and pasture persistence. The testing here was within a selection of ryegrasses, and the greater possible diversity across species may produce different effects. However, these results suggest that highly performing pastures under fertilised and irrigated grazed conditions are best constructed by selecting components that perform well individually than by deliberately introducing diversity between components.


AoB Plants ◽  
2019 ◽  
Author(s):  
M A Míguez-Montero ◽  
A Valentine ◽  
M A Pérez-Fernández

Abstract The impact of phosphorus (P) nutrition on plant growth, symbiotic N2 fixation, and phosphorus and nitrogen use and their assimilation was investigated in four leguminous plants of the genus Cytisus. Plants inoculated with Rhizobium strains isolated from plants of the four species growing in the wild were crop under controlled conditions in soils with either low P (5 µM) or high P (500 µM). The experiment was replicated in the presence and absence of plant irrigation to test for the effects of drought stress of inoculated and non-inoculated plants under the two P levels of fertilization. P-low treatments increased nodule production while plant biomass and shoot and root P and N contents were maximum at sufficient P. The reduction of P in the soil clearly induced biological nitrogen fixation and greater phosphorus and nitrogen uptake efficiencies, as shown by the total N and P accumulated in plants. Similarly, distinct tolerances to drought support this idea. Cytisus balansae had the lowest tolerance to water scarcity. Cytisus multiflorus and Cytisus scoparius were the most resistant species to drought, with this resistance enhanced in the inoculated plants. In the four species, the inoculation treatment clearly enhanced N-use efficiency, whereas P-use efficiency was greater in the non-inoculated plants in the irrigated treatment. With a P-induced demand for N, the plants nodulated prolifically and increased N supply from biological fixation. The physiological basis for N2-fixing C. scoparius and C. striatus maintaining growth at low P supply and responding to greater P supply is through balanced acquisition of P and N for plant demand. Native shrubby legumes are key species in natural ecosystems due to their capability to increase the net N budget in plants and soils and because they modulate the phosphorus availability. Four legumes in the genus Cytisus either native to or commonly represented in the Iberian Peninsula proved to be able shift their N use depending on the soil P availability and on the interactions established with their Bradyrhizobium symbionts. In the four species the inoculation treatment clearly enhanced N-use efficiency and drought tolerance, whereas P-use efficiency was greater in the non-inoculated plants in the irrigated treatment.



2009 ◽  
Vol 57 (3) ◽  
pp. 285-296 ◽  
Author(s):  
U. Sangakkara ◽  
P. Stamp

Green manuring is considered an important agronomic practice for smallholder farming systems in the tropics. Different species of legumes and non-legumes are applied either as ex situ or in situ green manures. Thus a field study conducted under rainfed conditions in Sri Lanka compared the effect of in situ and ex situ green manuring using two popular green manures ( Crotolaria juncea — a legume and Tithonia diversifolia — a non-legume) on the growth, seed yield and N use pattern of maize ( Zea mays ), the most popular upland cereal in the Asian tropics, grown with high and low N rates, in the two seasons that correspond to the monsoonal rains. In situ green manuring, especially with crotolaria, increased the growth, seed yield and N use efficiency of maize when compared to the ex situ addition of similar quantities of the green manure. The impact was also greater in the minor season, when the crop was subjected to moisture stress conditions. The benefits of in situ green manuring with tithonia were lower than those due to crotolaria. In situ green manuring with tithonia also led to a greater increase in growth, seed yield and N use efficiency in maize compared to ex situ green manuring with this species. The green manures, especially in situ application, also increased the benefits of enhanced rates of N fertilizer to the crops in both seasons, with greater use efficiency in the major season. The study showed the benefits of green manuring (both in and ex situ ) for obtaining higher yields of maize in the growing seasons of the Asian tropics, especially the in situ application of legume species.





2002 ◽  
Vol 12 (1) ◽  
pp. 19-25 ◽  
Author(s):  
D. Neilsen ◽  
G.H. Neilsen

In irrigated apple orchard systems, the magnitude and timing of plant demand for nitrogen (N) and retention of N in the root zone to allow root interception are important factors for efficient management of N fertilizer. Results from five experiments in high-density plantings of apple (Malus domestica) on dwarfing (`Malling 9') rootstocks are reported. All experimental plots received daily drip irrigation and N applied through the irrigation system (fertigation) with different regimes according to experimental design. Labelled fertilizer applications, whole tree excavation and partitioning and removal of N in fruit and senescent leaves were used to assess tree N demand. Nitrogen requirements ranged from 8 to 40 lb/acre (8.8 to 44 kg·ha-1) over the first 6 years after planting and N use efficiency was often low (<30%), likely because supply exceeded demand. Annual growth is supported by N remobilized from storage and taken up by roots. Root uptake of labelled fertilizer was negligible during early spring and the commencement of rapid uptake was associated with the end of remobilization and the start of shoot growth, rendering prebloom fertilizer applications ineffective. Thus timing of N supply to periods of high demand is crucial for improving efficiency. Comparisons were made to determine the effects on N leaching and tree N utilization of irrigation scheduled to meet evaporative demand and irrigation applied at a fixed rate. Water losses beneath the root zone were greater for fixed rate than scheduled irrigation during the coolest months (May, June and September) of irrigation application. Nitrogen leaching followed a similar pattern during times of N fertigation (May and June). Greater N use efficiency was also measured for trees when irrigation was scheduled to meet evaporative demand rather than applied at a fixed rate. The most N efficient management system was for trees receiving a low [50 ppm (mg·L-1)] fertigated N supply, at 0 to 4 or 4 to 8 weeks following bloom with scheduled irrigation.



2010 ◽  
Vol 61 (3) ◽  
pp. 214 ◽  
Author(s):  
K. Dawar ◽  
M. Zaman ◽  
J. S. Rowarth ◽  
J. Blennerhassett ◽  
M. H. Turnbull

Improving nitrogen (N)-use efficiency of applied urea is critical to maximise its uptake and decrease environmental impact. Two glasshouse-based studies were conducted to investigate the potential of incorporating urea fertiliser with urease inhibitor (N-(n-butyl) thiophosphoric triamide (NBPT) or ‘Agrotain’) to enhance fertiliser N uptake efficiency. Topsoil (0–0.075 m, Typic Haplustepts silt loam) from a pasture site near Lincoln, Canterbury, New Zealand, was collected and ryegrass (Lolium perenne L.) was grown from seed in standard plant trays maintained at soil moisture contents of 75–80% field capacity. Urea, Agrotain-treated urea, ammonium nitrate, ammonium sulfate, or sodium nitrate, were applied in granular form at rates equivalent to 25 or 50 kg N/ha with 4 replicates. Herbage was harvested 21 and 42 days after application of treatments to assess dry matter (DM) production, N uptake, leaf amino acid, ammonium (NH4+) and nitrate (NO3–) concentrations, and nitrate reductase activity (NRA). In a separate pot experiment, granular 15N urea (10 atom%) with or without Agrotain was applied to ryegrass at 25 kg N/ha. At 0.5, 1, 2, 3, 5, 10, and 21 days after treatment application, 3 pots per treatment were destructively sampled to determine urea hydrolysis, herbage DM, and 15N uptake. In both experiments, Agrotain-treated urea improved bio-availability of added N and resulted in significantly higher herbage DM yield and N uptake than urea alone or other forms of N fertilisers. Agrotain-treated urea applied at 25 kg N/ha increased N response by 66% compared with urea alone (and by greater proportions compared with the other fertiliser forms). Agrotain-treated urea applied at 25 kg N/ha produced significantly higher uptake efficiency (13 g DM/g of applied N) than at 50 kg N/ha (5 g DM/g of applied N). Tissue amino acids, NH4+ and NO3– contents, and NRA were not significantly influenced by any type of fertiliser. Results from the 15N experiment support the suggestion that a delay in urea hydrolysis by Agrotain provided an opportunity for direct plant uptake of an increased proportion of the applied urea-N than in the case of urea alone. Treating urea with Agrotain thus has the potential to increase N-use efficiency and herbage production.



2021 ◽  
Vol 13 (12) ◽  
pp. 2349
Author(s):  
Jingchun Ji ◽  
Jianli Liu ◽  
Jingjing Chen ◽  
Yujie Niu ◽  
Kefan Xuan ◽  
...  

Topdressing accounts for approximately 40% of the total nitrogen (N) application of winter wheat on the Huang-Huai-Hai Plain in China. However, N use efficiency of topdressing is low due to the inadaptable topdressing method used by local farmers. To improve the N use efficiency of winter wheat, an optimization method for topdressing (THP) is proposed that uses unmanned aerial vehicle (UAV)-based remote sensing to accurately acquire the growth status and an improved model for growth potential estimation and optimization of N fertilizer amount for topdressing (NFT). The method was validated and compared with three other methods by a field experiment: the conventional local farmer’s method (TLF), a nitrogen fertilization optimization algorithm (NFOA) proposed by Raun and Lukina (TRL) and a simplification introduced by Li and Zhang (TLZ). It shows that when insufficient basal fertilizer was provided, the proposed method provided as much NFT as the TLF method, i.e., 25.05% or 11.88% more than the TRL and TLZ methods and increased the yields by 4.62% or 2.27%, respectively; and when sufficient basal fertilizer was provided, the THP method followed the TRL and TLZ methods to reduce NFT but maintained as much yield as the TLF method with a decrease of NFT by 4.20%. The results prove that THP could enhance crop production under insufficient N preceding conditions by prescribing more fertilizer and increase nitrogen use efficiency (NUE) by lowering the fertilizer amount when enough basal fertilizer is provided.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jingchao Tang ◽  
Baodi Sun ◽  
Ruimei Cheng ◽  
Zuomin Shi ◽  
Da Luo ◽  
...  


2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.



Sign in / Sign up

Export Citation Format

Share Document