Herbicide resistance in Bromus and Hordeum spp. in the Western Australian grain belt

2015 ◽  
Vol 66 (5) ◽  
pp. 466 ◽  
Author(s):  
Mechelle J. Owen ◽  
Neree J. Martinez ◽  
Stephen B. Powles

Random surveys conducted in the Western Australian (WA) grain belt have shown that herbicide-resistant Lolium rigidum and Raphanus raphanistrum are a widespread problem across the cropping region. In 2010, a random survey was conducted to establish the levels of herbicide resistance for common weed species in crop fields, including the minor but emerging weeds Bromus and Hordeum spp. This is the first random survey in WA to establish the frequency of herbicide resistance in these species. For the annual grass weed Bromus, 91 populations were collected, indicating that this species was present in >20% of fields. Nearly all populations were susceptible to the commonly used herbicides tested in this study; however, a small number of populations (13%) displayed resistance to the acetolactate synthase-inhibiting sulfonylurea herbicides. Only one population displayed resistance to the acetyl-coenzyme A carboxylase-inhibiting herbicides. Forty-seven Hordeum populations were collected from 10% of fields, with most populations being susceptible to all herbicides tested. Of the Hordeum populations, 8% were resistant to the sulfonylurea herbicide sulfosulfuron, some with cross-resistance to the imidazolinone herbicides. No resistance was found to glyphosate or paraquat, although resistance to these herbicides has been documented elsewhere in Australia for Hordeum spp. (Victoria) and Bromus spp. (Victoria, South Australia and WA).

2015 ◽  
Vol 66 (10) ◽  
pp. 1079 ◽  
Author(s):  
Mechelle J. Owen ◽  
Neree J. Martinez ◽  
Stephen B. Powles

Raphanus raphanistrum is a problematic weed, which has become increasingly difficult to control in Australian cropping regions. In 2010, a random survey was conducted across 14 million ha of the Western Australian grain belt to establish the frequency of herbicide resistance in R. raphanistrum and to monitor the change in resistance levels by comparing results with a previous survey in 2003. Screening R. raphanistrum populations with herbicides commonly used to control this weed revealed that most populations (84%) contained individual plants resistant to the acetolactate synthase-inhibiting herbicide chlorsulfuron, whereas 49% of populations also had plants resistant to the imidazolinone herbicides. Resistance to other mode of action herbicides (2,4-D (76%) and diflufenican (49%)) was also common. Glyphosate, atrazine and pyrasulfotole + bromoxynil remained effective on most R. raphanistrum populations. These results demonstrate that resistance to some herbicides has increased significantly since 2003 when the values were 54% for chlorsulfuron and 60% for 2,4-D; therefore, a wide range of weed management options that target all phases of the cropping program are needed to sustain these cropping systems in the future.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Xiangying Liu ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Guolan Ma ◽  
Lamei Wu ◽  
...  

AbstractThe widespread, rapid evolution of herbicide-resistant weeds is a serious and escalating agronomic problem worldwide. During China’s economic boom, the country became one of the most important herbicide producers and consumers in the world, and herbicide resistance has dramatically increased in the past decade and has become a serious threat to agriculture. Here, following an evidence-based PRISMA (preferred reporting items for systematic reviews and meta-analyses) approach, we carried out a systematic review to quantitatively assess herbicide resistance in China. Multiple weed species, including 26, 18, 11, 9, 5, 5, 4, and 3 species in rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.)., orchards, and peanut (Arachis hypogaea L.) fields, respectively, have developed herbicide resistance. Acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, and synthetic auxin herbicides are the most resistance-prone herbicides and are the most frequently used mechanisms of action, followed by 5-enolpyruvylshikimate-3-phosphate synthase inhibitors and protoporphyrinogen oxidase inhibitors. The lack of alternative herbicides to manage weeds that exhibit cross-resistance or multiple resistance (or both) is an emerging issue and poses one of the greatest threats challenging the crop production and food safety both in China and globally.


2007 ◽  
Vol 58 (7) ◽  
pp. 711 ◽  
Author(s):  
Mechelle J. Owen ◽  
Michael J. Walsh ◽  
Rick S. Llewellyn ◽  
Stephen B. Powles

In 2003, a random survey was conducted across the Western Australian wheatbelt to establish the frequency and distribution of herbicide resistance in ryegrass populations infesting crop fields. Five hundred cropping fields were visited at crop maturity, and ryegrass seed was collected in 452 of these fields. Subsequently, each crop field population was screened with herbicides of various modes of action that are commonly used for ryegrass control in Australian cropping systems. Most of these ryegrass populations were found to be resistant to the ACCase-inhibitor herbicide diclofop-methyl (68%) and the ALS-inhibitor herbicide sulfometuron (88%). A comparison of resistance levels in the same agronomic zones surveyed 5 years earlier determined that there had been an increase of 20 percentage points in the frequency of resistance over this 5-year period. This survey also determined that the majority (64%) of populations were found to be multiple resistant to both diclofop-methyl and sulfometuron. The distribution patterns of the collected populations indicated that there were higher frequencies of resistant and developing resistance populations occurring in the intensively cropped regions of the wheatbelt, which had greater herbicide selection pressure. Of concern is that 24% and 8% of populations were found to be developing resistance to trifluralin and clethodim, respectively. Currently these herbicides are heavily relied upon for control of ACCase and ALS herbicide resistant ryegrass. Nearly all populations remain susceptible to glyphosate. Ryegrass across the WA wheatbelt now exhibits multiple resistance across many but not all herbicides, posing severe management and sustainability challenges.


Weed Science ◽  
1998 ◽  
Vol 46 (4) ◽  
pp. 390-396 ◽  
Author(s):  
Linda M. Hall ◽  
Kim M. Stromme ◽  
Geoff P. Horsman ◽  
Malcolm D. Devine

A false cleavers population that survived treatment with triasulfuron/bromoxynil in 1996 was identified in central Alberta, Canada, in a field that had been treated with acetolactate synthase (ALS) inhibitors in 3 of the previous 6 yr. In greenhouse studies, this biotype was highly resistant to the ALS inhibitors triasulfuron, thifensulfuron/tribenuron, and sulfometuron and moderately resistant to imazethapyr; GR50, values were > 16, > 5, > 1.0, and 9.9, respectively. In addition, cross-resistance was identified to the auxin-type herbicide quinclorac (GR50 value > 6.7) but not to fluroxypyr (GR50 value 1) or MCPA/mecoprop/dicamba. Quinclorac had not been used previously in this field. Analysis of ALS extracted from the resistant biotype and a susceptible biotype from a nearby location indicated that resistance to ALS inhibitors was due to an altered target site with reduced sensitivity to a broad range of ALS inhibitors. The ALS I50 values for triasulfuron, metsulfuron, chlorsulfuron, thifensulfuron, and imazethapyr were 36, 34, 92, 96, and 14 times higher, respectively, for the resistant compared to the susceptible biotype. The mechanism of resistance to quinclorac is unknown. This is the first report of high-level herbicide resistance in this weed species.


2015 ◽  
Vol 29 (4) ◽  
pp. 782-792 ◽  
Author(s):  
Lovreet S. Shergill ◽  
Benjamin Fleet ◽  
Christopher Preston ◽  
Gurjeet Gill

Smooth barley has emerged as a problematic weed in cereal crops of South Australia. After the recent reports of herbicide resistance and increase in seed dormancy in smooth barley, it was considered important to determine the herbicide resistance status and seedbank behavior of field populations of this weed species. A field survey was undertaken in the Upper North and Eyre Peninsula regions of South Australia in October 2012. Of the 90 smooth barley populations screened for resistance to quizalofop, 15% exhibited some level of resistance and 85% were susceptible. Resistance to acetolactate synthase (ALS)-inhibiting herbicides was low, with only 3 and 12% of populations classified as developing resistance to imazamox + imazapyr and sulfosulfuron, respectively. No multiple resistance patterns were observed; however, two ALS-inhibiting herbicide-resistant populations had sulfonylurea-to-imidazolinone cross-resistance. At the start of the growing season, the majority of smooth barley populations emerged rapidly (median 50% time to emergence [T50] = 8 d). In contrast, some populations of smooth barley displayed an extremely slow emergence pattern, withT50of > 20 d. No direct linkage between seed dormancy and herbicide resistance was observed. However, two acetyl coenzyme A carboxylase-inhibiting herbicide-resistant populations were highly dormant and exhibited delayed emergence. The majority of smooth barley populations showed low-level or no seedbank persistence, but a few populations persisted for 1 yr. However, some weed populations had up to 20% seedbank persistence from 1 yr to the next. Overall there was a strong negative relationship between smooth barley seedling emergence and the level of seed persistence (R2= 0.84, P < 0.05). This association indicated that greater seed dormancy could be responsible for extended persistence of the seedbank of this weed species. The study provides valuable insights into the general pattern of herbicide resistance and the behavior of the seedbank of smooth barley populations on South Australian farms.


Author(s):  
Ricardo Alcántara-de la Cruz ◽  
Guilherme Moraes de Oliveira ◽  
Leonardo Bianco de Carvalho ◽  
Maria Fátima das Graças Fernandes da Silva

Brazil is a large producer and exporter of crops in global terms. Weeds may be responsible for ~14% of crop losses, depending on the crop system. Herbicides occupy 58% of the Brazilian pesticide market; however, the continuous use of these products and the high selection pressure have led to the emergence of weeds resistant to herbicides. Today, there are 51 weed species reported as being resistant to herbicides in Brazil, of which 17 involves cross and multiple-resistance. Acetolactate synthase (ALS), acetyl coenzyme A carboxylase (ACCase) and 5-enolpiruvylshikimate-3-phosphate synthase (EPSPs) inhibitors are the herbicidal groups with the most resistance cases. Soybean, corn, rice, wheat and cotton present 30, 12, 10, 9 and 8 cases, respectively, occurring mainly in herbicide-resistant crop fields from the Southern and Central West regions of the country. To better understand the dimensions of herbicide resistance, in this chapter, we will explore the size of agricultural activity in Brazil, the pesticide market and the use of herbicides in the main crops. In addition, the agronomic, scientific-technical and economic aspects that have contributed, directly or indirectly, to the selection of resistant weeds will be discussed in order to have an overview of the economic impact of herbicide resistance management.


2012 ◽  
Vol 52 (3) ◽  
pp. 308-313 ◽  
Author(s):  
Ilias Travlos

Evaluation of Herbicide-Resistance Status on Populations of Littleseed Canarygrass (Phalaris MinorRetz.) from Southern Greece and Suggestions for their Effective ControlIn 2010, a survey was conducted in the wheat fields of a typical cereal-producing region of Greece to establish the frequency and distribution of herbicide-resistant littleseed canarygrass (Phalaris minorRetz.). In total, 73 canarygrass accessions were collected and screened in a field experiment with several herbicides commonly used to control this weed. Most of the weed populations were classed as resistant (or developing resistance) to the acetyl-CoA varboxylase (ACCase)-inhibiting herbicide diclofop, while resistance to clodinafop was markedly lower. The results of the pot experiments showed that some of the canary populations were found to have a very high level of diclofop resistance (resistance index up to 12.4), while cross resistance with other herbicides was also common. The levels of resistance and cross resistance patterns among populations varied along with the different amounts and times of selection pressure. Such variation indicated either more than one mechanism of resistance or different resistance mutations in these weed populations. The population which had the highest diclofop resistance level, showed resistance to all aryloxyphenoxypropinate (APP) herbicides applied and non-ACCase inhibitors. Alternative ACCase-inhibiting herbicides, such as pinoxaden remain effective on the majority of the tested canarygrass populations, while the acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron + iodosulfuron could also provide some solutions. Consequently, there is an opportunity to effectively control canarygrass by selecting from a wide range of herbicides. It is the integration of agronomic practices with herbicide application, which helps in effective management ofP. minorand particularly its resistant populations.


Weed Science ◽  
2019 ◽  
pp. 1-6
Author(s):  
Zhaofeng Huang ◽  
Xinxin Zhou ◽  
Chaoxian Zhang ◽  
Cuilan Jiang ◽  
Hongjuan Huang ◽  
...  

Abstract Common lambsquarters (Chenopodium album L.) is one of the most troublesome weeds in soybean [Glycine max (L.) Merr.] and corn (Zea mays L.) fields in northeast China. In 2017, a C. album population that survived imazethapyr at the recommended field rate was collected from a soybean field in Heilongjiang Province in China. Experiments were conducted to determine the basis of resistance to imazethapyr and investigate the herbicide-resistance pattern in C. album. Dose–response tests showed that the resistant population (R) displayed high resistance to imazethapyr (20-fold) compared with the susceptible population (S). An in vitro acetolactate synthase (ALS) activity assay indicated that the ALS of the R population was resistant to imazethapyr compared with the ALS of the S population. Sequence analysis of the ALS gene revealed that the GCA was replaced by ACA at amino acid position 122, which resulted in an alanine to threonine substitution (Ala-122-Thr) in the R population. The R population displayed cross-resistance to thifensulfuron-methyl and flumetsulam but susceptibility to bispyribac-sodium, flucarbazone, glyphosate, mesotrione, and fomesafen. These results confirmed that the basis of imazethapyr resistance in C. album was conferred by the Ala-122-Thr substitution in the ALS enzyme. This is the first report of the target-site basis of ALS-inhibiting herbicide resistance in C. album.


Author(s):  
R. Byrne ◽  
A.V. Vijaya Bhaskar ◽  
J. Spink ◽  
R. Freckleton ◽  
P. Neve ◽  
...  

Following growers’ reports of herbicide control problems, populations of 30 wild oats, Avena fatua, were collected from the south-east main arable counties of Ireland in 2016 and investigated for the occurrence and potential for herbicide resistance to acetyl-CoA carboxylase (ACCase) inhibitors pinoxaden, propaquizafop and cycloxydim, as well as acetolactate synthase (ALS) inhibitor mesosulfuron + iodosulfuron. Plant survival ≥20% was considered as the discriminating threshold between resistant and susceptible populations, when plants were treated with full recommended field rates of ACCase/ALS inhibitors. Glasshouse sensitivity screens revealed 2 out of 30 populations were cross-resistant to all three ACCase inhibitors. While three populations were cross-resistant to both pinoxaden and propaquizafop, and additionally, two populations were resistant to propaquizafop only. Different degree of resistance and cross-resistance between resistant populations suggest the involvement of either different point mutations or more than one resistance mechanism. Nevertheless, all populations including the seven ACCase-resistant populations were equally susceptible to ALS inhibitor. An integrated weed management (cultural/non-chemical control tactics and judicious use of herbicides) approach is strongly recommended to minimize the risk of herbicide resistance evolution.


2007 ◽  
Vol 87 (4) ◽  
pp. 965-972 ◽  
Author(s):  
H. J. Beckie ◽  
L. M. Hall ◽  
F. J. Tardif ◽  
G. Séguin-Swartz

Two stinkweed populations from southern and central Alberta were not controlled by acetolactate synthase (ALS)-inhibiting herbicides in 2000. This study reports on their cross-resistance to ALS-inhibiting herbicides, molecular basis of resistance, and inheritance of resistance. Both putative herbicide-resistant biotypes responded similarly to increasing doses of the herbicides. The biotypes were highly resistant to ethametsulfuron and exhibited a low level of resistance to metsulfuron and imazethapyr. However, both biotypes were not resistant to florasulam, a triazolopyrimidine ALS inhibitor, or sulfometuron, a non-selective sulfonylurea ALS inhibitor. The cross-resistance pattern was consistent with the confirmed target-site mutation. Sequence analysis of the ALS gene detected a Pro197Leu mutation in both biotypes. Similar to many other ALS inhibitor-resistant weed biotypes, resistance was conferred by a single dominant gene. This study confirms the first global occurrence of herbicide resistance in this species. Key words: ALS-inhibitor resistance, ALS sequence, herbicide resistance, target-site mutation


Sign in / Sign up

Export Citation Format

Share Document