Multiple herbicide-resistant wild radish (Raphanus raphanistrum) populations dominate Western Australian cropping fields

2015 ◽  
Vol 66 (10) ◽  
pp. 1079 ◽  
Author(s):  
Mechelle J. Owen ◽  
Neree J. Martinez ◽  
Stephen B. Powles

Raphanus raphanistrum is a problematic weed, which has become increasingly difficult to control in Australian cropping regions. In 2010, a random survey was conducted across 14 million ha of the Western Australian grain belt to establish the frequency of herbicide resistance in R. raphanistrum and to monitor the change in resistance levels by comparing results with a previous survey in 2003. Screening R. raphanistrum populations with herbicides commonly used to control this weed revealed that most populations (84%) contained individual plants resistant to the acetolactate synthase-inhibiting herbicide chlorsulfuron, whereas 49% of populations also had plants resistant to the imidazolinone herbicides. Resistance to other mode of action herbicides (2,4-D (76%) and diflufenican (49%)) was also common. Glyphosate, atrazine and pyrasulfotole + bromoxynil remained effective on most R. raphanistrum populations. These results demonstrate that resistance to some herbicides has increased significantly since 2003 when the values were 54% for chlorsulfuron and 60% for 2,4-D; therefore, a wide range of weed management options that target all phases of the cropping program are needed to sustain these cropping systems in the future.

2016 ◽  
Vol 67 (5) ◽  
pp. 520 ◽  
Author(s):  
Mechelle J. Owen ◽  
Stephen B. Powles

Avena is a problematic weed of cropping regions of southern Australia and many areas of the world. In 2010, a random survey was conducted across 14 million hectares of the Western Australian grain belt to monitor the change in herbicide resistance levels by comparing resistance frequency results with a survey conducted in 2005. Screening Avena populations with herbicides commonly used to control this weed revealed that 48% of Avena populations displayed resistance to the commonly used acetyl-Co A carboxylase-inhibiting herbicides, which was lower than that found in 2005 (71%). The broad-spectrum herbicides glyphosate and paraquat provided good control of all Avena populations. Resistance to acetolactate synthase-inhibiting herbicides and to flamprop were detected for the first time in Western Australia in this survey. Therefore, a wide range of weed management options that target all phases of the cropping program are needed to sustain these cropping systems in the future.


2015 ◽  
Vol 66 (5) ◽  
pp. 466 ◽  
Author(s):  
Mechelle J. Owen ◽  
Neree J. Martinez ◽  
Stephen B. Powles

Random surveys conducted in the Western Australian (WA) grain belt have shown that herbicide-resistant Lolium rigidum and Raphanus raphanistrum are a widespread problem across the cropping region. In 2010, a random survey was conducted to establish the levels of herbicide resistance for common weed species in crop fields, including the minor but emerging weeds Bromus and Hordeum spp. This is the first random survey in WA to establish the frequency of herbicide resistance in these species. For the annual grass weed Bromus, 91 populations were collected, indicating that this species was present in >20% of fields. Nearly all populations were susceptible to the commonly used herbicides tested in this study; however, a small number of populations (13%) displayed resistance to the acetolactate synthase-inhibiting sulfonylurea herbicides. Only one population displayed resistance to the acetyl-coenzyme A carboxylase-inhibiting herbicides. Forty-seven Hordeum populations were collected from 10% of fields, with most populations being susceptible to all herbicides tested. Of the Hordeum populations, 8% were resistant to the sulfonylurea herbicide sulfosulfuron, some with cross-resistance to the imidazolinone herbicides. No resistance was found to glyphosate or paraquat, although resistance to these herbicides has been documented elsewhere in Australia for Hordeum spp. (Victoria) and Bromus spp. (Victoria, South Australia and WA).


2007 ◽  
Vol 58 (7) ◽  
pp. 711 ◽  
Author(s):  
Mechelle J. Owen ◽  
Michael J. Walsh ◽  
Rick S. Llewellyn ◽  
Stephen B. Powles

In 2003, a random survey was conducted across the Western Australian wheatbelt to establish the frequency and distribution of herbicide resistance in ryegrass populations infesting crop fields. Five hundred cropping fields were visited at crop maturity, and ryegrass seed was collected in 452 of these fields. Subsequently, each crop field population was screened with herbicides of various modes of action that are commonly used for ryegrass control in Australian cropping systems. Most of these ryegrass populations were found to be resistant to the ACCase-inhibitor herbicide diclofop-methyl (68%) and the ALS-inhibitor herbicide sulfometuron (88%). A comparison of resistance levels in the same agronomic zones surveyed 5 years earlier determined that there had been an increase of 20 percentage points in the frequency of resistance over this 5-year period. This survey also determined that the majority (64%) of populations were found to be multiple resistant to both diclofop-methyl and sulfometuron. The distribution patterns of the collected populations indicated that there were higher frequencies of resistant and developing resistance populations occurring in the intensively cropped regions of the wheatbelt, which had greater herbicide selection pressure. Of concern is that 24% and 8% of populations were found to be developing resistance to trifluralin and clethodim, respectively. Currently these herbicides are heavily relied upon for control of ACCase and ALS herbicide resistant ryegrass. Nearly all populations remain susceptible to glyphosate. Ryegrass across the WA wheatbelt now exhibits multiple resistance across many but not all herbicides, posing severe management and sustainability challenges.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 729-737 ◽  
Author(s):  
Thomas R. Butts ◽  
Bruno C. Vieira ◽  
Débora O. Latorre ◽  
Rodrigo Werle ◽  
Greg R. Kruger

AbstractWaterhemp [Amaranthus tuberculatus(Moq.) J. D. Sauer] is a troublesome weed occurring in cropping systems throughout the U.S. Midwest with an ability to rapidly evolve herbicide resistance that could be associated with competitive disadvantages. Little research has investigated the competitiveness of differentA. tuberculatuspopulations under similar environmental conditions. The objectives of this study were to evaluate: (1) the interspecific competitiveness of three herbicide-resistantA. tuberculatuspopulations (2,4-D and atrazine resistant [2A-R], glyphosate and protoporphyrinogen oxidase [PPO]-inhibitor resistant [GP-R], and 2,4-D, atrazine, glyphosate, and PPO-inhibitor susceptible [2AGP-S]) with soybean [Glycine max(L.) Merr.]; and (2) the density-dependent response of eachA. tuberculatuspopulation within a constant soybean population in a greenhouse environment.Amaranthus tuberculatuscompetitiveness with soybean was evaluated across five target weed densities of 0, 2, 4, 8, and 16 plants pot−1(equivalent to 0, 20, 40, 80, and 160 plants m−2) with 3 soybean plants pot−1(equivalent to 300,000 plants ha−1). At the R1 soybean harvest time, no difference in soybean biomass was observed acrossA. tuberculatuspopulations. AtA. tuberculatusdensities <8 plants pot−1, the 2AGP-S population had the greatest biomass and stem diameter per plant. At the R7 harvest time, the 2AGP-S population caused the greatest loss in soybean biomass and number of pods compared with the other populations at densities of <16 plants pot−1. The 2AGP-S population had greater early-season biomass accumulation and stem diameter compared with the otherA. tuberculatuspopulations, which resulted in greater late-season reduction in soybean biomass and number of pods. This research indicates there may be evidence of interspecific competitive fitness cost associated with the evolution of 2,4-D, atrazine, glyphosate, and PPO-inhibitor resistance inA. tuberculatus. Focus should be placed on effectively using cultural weed management practices to enhance crop competitiveness, especially early in the season, to increase suppression of herbicide-resistantA. tuberculatus.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 390-397 ◽  
Author(s):  
Ivan Sartorato ◽  
Antonio Berti ◽  
Giuseppe Zanin ◽  
Claudio M. Dunan

The introduction of herbicide-resistant crops and postemergence herbicides with a wide action spectrum shifted the research focus from how to when crops should be treated. To maximize net return of herbicide applications, the evolution of weed–crop competition over time must be considered and its effects quantified. A model for predicting the yield trend in relation to weed removal time, considering emergence dynamics and density, was tested on data from glyphosate-resistant soybean grown in cropping systems in Italy and Argentina. Despite an ample variation of weed emergence dynamics and weed load in the four trials, the model satisfactorily predicted yield loss evolution. The estimated optimum time for weed control (OTWC) varied from about 18 d after soybean emergence in Argentina to 20 to 23 d in Italy, with time windows for spraying ranging from 14 to 28 d. Within these limits a single glyphosate application ensures good weed control at low cost and avoids side effects like the more probable unfavorable weed flora evolution with double applications and the presence of residues in grains. Despite the apparent simplicity of weed control based on nonselective herbicides, the study outlines that many variables have to be considered to optimize weed management, particularly for the time evolution of the infestation and, subsequently, a proper timing of herbicide application.


2014 ◽  
Vol 28 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Muthukumar V. Bagavathiannan ◽  
Jason K. Norsworthy ◽  
Kenneth L. Smith ◽  
Paul Neve

Herbicide-resistant barnyardgrass has become widespread in the rice production systems of the midsouthern United States, leaving few effective herbicide options for controlling this weed. The acetolactate synthase (ALS)- and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides remain largely effective in Clearfield®rice production, but strategies need to be developed to protect the long-term utility of these options. A two-trait model was developed to understand simultaneous evolution of resistance in barnyardgrass to the ALS- and ACCase-inhibiting herbicides in Clearfield rice. The model was used to predict resistance under a number of common weed management scenarios across 1,000 hypothetical rice fields in the Mississippi Delta region and answer some key management questions. Under an ALS inhibitor–only program consisting of three annual applications of imidazolinone herbicides (imazethapyr or imazamox) in continuous Clearfield rice, resistance was predicted within 4 yr with 80% risk by year 30. Weed management programs that consisted of ALS- and ACCase-inhibiting herbicides such as fenoxaprop and cyhalofop greatly reduced the risk of ALS-inhibiting herbicide resistance (12% risk by year 30), but there was a considerable risk for ACCase resistance (evolving by year 14 with 13% risk by year 30) and multiple resistance (evolving by year 16 with 11% risk by year 30) to both of these mechanisms of action. A unique insight was that failure to stop using a herbicide soon after resistance evolution can accelerate resistance to the subsequent herbicide option. Further, a strong emphasis on minimizing seedbank size is vital for any successful weed management strategy. Results also demonstrated that diversifying management options is not just adequate, but diversity combined with timely herbicide applications aimed at achieving high efficacy levels possible is imperative.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 337-342 ◽  
Author(s):  
Donald C. Thill ◽  
Carol A. Mallory-Smith

Weeds spread through movement of seeds and vegetative reproductive propagules. Pollen movement can spread weedy traits, such as herbicide resistance, between related weed and crop species. Weed seeds can spread short or long distances by natural plant dehiscence mechanisms, wind, water, animals, and man&s activities. This symposium paper is a practical review of short-distance spread of weed seeds in and between nearby arable fields and noncrop lands, examining some of the causes of spread and subsequent effects on crop production. Pollen movement, as it affects the spread of herbicide resistance, also is considered a component of short-distance weed spread. Specific weed management options can be used to reduce man-caused weed seed spread within and between nearby fields, thus reducing potential crop yield losses. Long-term management will be more difficult for weed seed spread by natural dispersal mechanisms.


2010 ◽  
Vol 24 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Traci A. Rauch ◽  
Donald C. Thill ◽  
Seth A. Gersdorf ◽  
William J. Price

Persistent use of herbicides has resulted in the selection of many herbicide-resistant weeds worldwide. A survey of 75 fields in the Palouse region of the inland Pacific Northwest was conducted to determine the extent of Italian ryegrass resistance to grass herbicides commonly used in winter wheat-cropping systems. Plants grown from collected seed samples were tested for resistance to diclofop, clodinafop, quizalofop, tralkoxydim, sethoxydim, clethodim, pinoxaden, triasulfuron, mesosulfuron, flucarbazone, imazamox, and flufenacet/metribuzin. Averaged across herbicide families within a herbicide group, some level of resistance was exhibited in 73, 31, and 31% of the populations to the aryloxyphenoxypropionates, cyclohexanediones, and phenylpyrazoline herbicides, respectively, and 39, 53, and 55% of the populations to the sulfonylureas, sulfonylaminocarbonyltriazolinone, and imidazolinone herbicides, respectively. Twelve percent of the populations showed some level of resistance to flufenacet/metribuzin. Cross-resistance to all acetyl coenzyme A carboxylase-inhibiting (group 1) herbicides was observed in 12% of the populations, whereas 25% of the populations were cross-resistant to all acetolactate synthase-inhibiting (group 2) herbicides tested. Of all the populations tested, 7% exhibited multiple resistance to at least one herbicide within all three groups tested. Only 5% of populations were completely susceptible to all 12 herbicides tested. These results indicate that herbicide-resistant Italian ryegrass populations are now common across much of the Palouse region in northern Idaho and eastern Washington.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 874
Author(s):  
Marta Stankiewicz-Kosyl ◽  
Agnieszka Synowiec ◽  
Małgorzata Haliniarz ◽  
Anna Wenda-Piesik ◽  
Krzysztof Domaradzki ◽  
...  

Corn poppy (Papaver rhoeas L.) and cornflower (Centaurea cyanus L.) are two overwintering weed species found in crop fields in Europe. They are characterised by a similar life cycle, similar competitive efforts, and a spectrum of herbicides recommended for their control. This review summarises the biology and herbicide resistance phenomena of corn poppy and cornflower in Europe. Corn poppy is one of the most dangerous dicotyledonous weeds, having developed herbicide resistance to acetolactate synthase inhibitors and growth regulators, especially in Mediterranean countries and Great Britain. Target site resistance to acetolactate synthase inhibitors dominates among herbicide-resistant poppy biotypes. The importance of non-target site resistance to acetolactate synthase inhibitors in this species may be underestimated because non-target site resistance is very often associated with target site resistance. Cornflower, meanwhile, is increasingly rare in European agricultural landscapes, with acetolactate synthase inhibitors-resistant biotypes only listed in Poland. However, the mechanisms of cornflower herbicide resistance are not well recognised. Currently, herbicides mainly from acetolactate synthase and photosystem II inhibitors as well as from synthetic auxins groups are recommended for the control of both weeds. Integrated methods of management of both weeds, especially herbicide-resistant biotypes, continue to be underrepresented.


2015 ◽  
Vol 31 (2) ◽  
pp. 111-121 ◽  
Author(s):  
Corrado Ciaccia ◽  
Stefano Canali ◽  
Gabriele Campanelli ◽  
Elena Testani ◽  
Francesco Montemurro ◽  
...  

AbstractIntegrating cover crops into vegetable cropping systems can provide a wide range of ecological services, of which weed management is a key component. Cover crop effects on weed control, however, are dependent on termination methods and weed species present in specific cropping seasons. A 2-year weed management experiment with two cultivars of organic zucchini (Cucurbita pepo L.) in central Italy was carried out to compare the effect of a barley (Hordeum distichum L.) cover crop terminated with a modified roller-crimper (RC) to incorporated barley as green manure (GM) and a tilled control left fallow (FA) in the off-season. The effects of cover-crop management on crop competitiveness, yields and weed populations were evaluated by direct measurement, visual estimation and competition index methods. Results showed a significant reduction in weed biomass (>80%) and weed abundance with the RC compared to the GM and FA treatments. Moreover, the RC barley mulch maintained weed control in zucchini plots even under high weed pressure, as determined by the agronomic tolerance to competition (ATC) value of 67% in the RC treatment compared to 40 and 34% in the FA and GM treatments, respectively, averaged over both years of the experiment. The competitive balance (Cb), which quantified the ability of the zucchini crop to compete with weed populations, was also greater (+0.37) in the RC treatment compared to FA (−0.87) and GM (−0.69) treatments over the same period. Zucchini crop biomass was greatest in the RC treatment in 2011. Zucchini fruit yields varied from an average over both years of 1.4 Mg ha−1 in the RC treatment to 0.7 Mg ha−1 in the GM treatment, but yields in the FA treatment, 1.2 Mg ha−1, did not differ from the RC treatment. No differences in yield between ‘Dietary’ and ‘Every’ zucchini, or any significant interactions between cultivar and cover management related to fruit biomass, were observed. Our findings suggested the viability of the modified RC in creating a barley cover-crop mulch to effectively manage weeds and enhance yields in transplanted zucchini.


Sign in / Sign up

Export Citation Format

Share Document