Biological nitrification inhibition by weeds: wild radish, brome grass, wild oats and annual ryegrass decrease nitrification rates in their rhizospheres

2017 ◽  
Vol 68 (8) ◽  
pp. 798 ◽  
Author(s):  
Cathryn A. O'Sullivan ◽  
Kelley Whisson ◽  
Karen Treble ◽  
Margaret M. Roper ◽  
Shayne F. Micin ◽  
...  

This study investigated the ability of several plant species commonly occurring as weeds in Australian cropping systems to produce root exudates that inhibit nitrification via biological nitrification inhibition (BNI). Seedlings of wild radish (Raphanus raphanistrum), great brome grass (Bromus diandrus), wild oats (Avena fatua), annual ryegrass (Lolium rigidum) and Brachiaria humidicola (BNI-positive control) were grown in hydroponics, and the impact of their root exudates on NO3– production by Nitrosomonas europaea was measured in a pure-culture assay. A pot study (soil-based assay) was then conducted to confirm the ability of the weeds to inhibit nitrification in whole soils. All of the tested weeds slowed NO3– production by N. europaea in the pure-culture assay and significantly inhibited potential nitrification rates in soil-based assays. Root exudates produced by wild radish were the most inhibitory, slowing NO3– production by the pure culture of N. europaea by 53 ± 6.1% and completely inhibiting nitrification in the soil-based assay. The other weed species all had BNI capacities comparable to that of B. humidicola and significantly higher than that previously reported for wheat cv. Janz. This study demonstrates that several commonly occurring weed species have BNI capacity. By altering the N cycle, and retaining NH4+ in the soils in which they grow, these weeds may gain a competitive advantage over species (including crops) that prefer NO3–. Increasing our understanding of how weeds compete with crops for N may open avenues for novel weed-management strategies.

2014 ◽  
Vol 28 (3) ◽  
pp. 486-493 ◽  
Author(s):  
Michael J. Walsh ◽  
Stephen B. Powles

Seed production of annual weeds persisting through cropping phases replenishes/establishes viable seed banks from which these weeds will continue to interfere with crop production. Harvest weed seed control (HWSC) systems are now viewed as an effective means of interrupting this process by targeting mature weed seed, preventing seed bank inputs. However, the efficacy of these systems is directly related to the proportion of total seed production that the targeted weed species retains (seed retention) at crop maturity. This study determined the seed retention of the four dominant annual weeds of Australian cropping systems - annual ryegrass, wild radish, brome grass, and wild oat. Beginning at the first opportunity for wheat harvest and on a weekly basis for 28 d afterwards the proportion of total seed production retained above a 15 cm harvest cutting height was determined for these weed species present in wheat crops at nine locations across the Western Australian (WA) wheat-belt. Very high proportions of total seed production were retained at wheat crop maturity for annual ryegrass (85%), wild radish (99%), brome grass (77%), and wild oat (84%). Importantly, seed retention remained high for annual ryegrass and wild radish throughout the 28 d harvest period. At the end of this period, 63 and 79% of total seed production for annual ryegrass and wild radish respectively, was retained above harvest cutting height. However, seed retention for brome grass (41%) and wild oat (39%) was substantially lower after 28 d. High seed retention at crop maturity, as identified here, clearly indicates the potential for HWSC systems to reduce seed bank replenishment and diminish subsequent crop interference by the four most problematic species of Australian crops.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4960 ◽  
Author(s):  
Chelsea K. Janke ◽  
Laura A. Wendling ◽  
Ryosuke Fujinuma

Australian native species grow competitively in nutrient limited environments, particularly in nitrogen (N) limited soils; however, the mechanism that enables this is poorly understood. Biological nitrification inhibition (BNI), which is the release of root exudates into the plant rhizosphere to inhibit the nitrification process, is a hypothesized adaptive mechanism for maximizing N uptake. To date, few studies have investigated the temporal pattern and components of root exudates by Australian native plant species for BNI. This study examined root exudates from two Australian native species,Hibiscus splendensandSolanum echinatum,and contrasted with exudates ofSorghum bicolor, a plant widely demonstrated to exhibit BNI capacity. Root exudates were collected from plants at two, four, and six weeks after transplanting to solution culture. Root exudates contained three types of organic acids (OAs), oxalic, citric and succinic acids, regardless of the species. However, the two Australian natives species released larger amount of OAs in earlier development stages thanS. bicolor. The total quantity of these OAs released per unit root dry mass was also seven-ten times greater for Australian native plant species compared toS. bicolor. The root exudates significantly inhibited nitrification activity over six weeks’ growth in a potential nitrification assay, withS. echinatum(ca. 81% inhibition) >S. bicolor(ca. 80% inhibition) >H. splendens(ca. 78% inhibition). The narrow range of BNI capacity in the study plants limited the determination of a relationship between OAs and BNI; however, a lack of correlation between individual OAs and inhibition of nitrification suggests OAs may not directly contribute to BNI. These results indicate that Australian native species generate a strongly N conserving environment within the rhizosphere up to six weeks after germination, establishing a competitive advantage in severely N limited environments.


Author(s):  
Arindam Ghatak ◽  
Florian Schindler ◽  
Gert Bachmann ◽  
Doris Engelmeier ◽  
Prasad Bajaj ◽  
...  

AbstractRoots secrete a vast array of low molecular weight compounds into the soil broadly referred to as root exudates. It is a key mechanism by which plants and soil microbes interact in the rhizosphere. The effect of drought stress on the exudation process and composition is rarely studied, especially in cereal crops. This study focuses on comparative metabolic profiling of the exudates from sensitive and tolerant genotypes of pearl millet after a period of drought stress. We employed a combined platform of gas and liquid chromatography coupled to mass spectrometry to cover both primary and secondary metabolites. The results obtained demonstrate that both genotype and drought stress have a significant impact on the concentration and composition of root exudates. The complexity and function of these differential root exudates are discussed. To reveal the potential effect of root exudates on the soil microbial community after a period of drought stress, we also tested for biological nitrification inhibition (BNI) activity. The analysis revealed a genotype-dependent enhancement of BNI activity after a defined period of drought stress. In parallel, we observed a genotype-specific relation of elongated root growth and root exudation under drought stress. These data suggest that the drought stress-dependent change in root exudation can manipulate the microbial soil communities to adapt and survive under harsh conditions.


2016 ◽  
Vol 212 (3) ◽  
pp. 646-656 ◽  
Author(s):  
Li Sun ◽  
Yufang Lu ◽  
Fangwei Yu ◽  
Herbert J. Kronzucker ◽  
Weiming Shi

Author(s):  
Junnosuke Otaka ◽  
Guntur Venkata Subbarao ◽  
Hiroshi Ono ◽  
Tadashi Yoshihashi

AbstractTo control agronomic N losses and reduce environmental pollution, biological nitrification inhibition (BNI) is a promising strategy. BNI is an ecological phenomenon by which certain plants release bioactive compounds that can suppress nitrifying soil microbes. Herein, we report on two hydrophobic BNI compounds released from maize root exudation (1 and 2), together with two BNI compounds inside maize roots (3 and 4). On the basis of a bioassay-guided fractionation method using a recombinant nitrifying bacterium Nitrosomonas europaea, 2,7-dimethoxy-1,4-naphthoquinone (1, ED50 = 2 μM) was identified for the first time from dichloromethane (DCM) wash concentrate of maize root surface and named “zeanone.” The benzoxazinoid 2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one (HDMBOA, 2, ED50 = 13 μM) was isolated from DCM extract of maize roots, and two analogs of compound 2, 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (HMBOA, 3, ED50 = 91 μM) and HDMBOA-β-glucoside (4, ED50 = 94 μM), were isolated from methanol extract of maize roots. Their chemical structures (1–4) were determined by extensive spectroscopic methods. The contributions of these four isolated BNI compounds (1–4) to the hydrophobic BNI activity in maize roots were 19%, 20%, 2%, and 4%, respectively. A possible biosynthetic pathway for zeanone (1) is proposed. These results provide insights into the strength of hydrophobic BNI activity released from maize root systems, the chemical identities of the isolated BNIs, and their relative contribution to the BNI activity from maize root systems.


Weed Science ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Nadeem Iqbal ◽  
Sudheesh Manalil ◽  
Bhagirath S. Chauhan ◽  
Steve W. Adkins

AbstractSesbania [Sesbania cannabina(Retz.) Pers.] is a problematic emerging weed species in Australian cotton-farming systems. However, globally, no information is available regarding its seed germination biology, and better understanding will help in devising superior management strategies to prevent further infestations. Laboratory and glasshouse studies were conducted to evaluate the impact of various environmental factors such as light, temperature, salt, osmotic and pH stress, and burial depth on germination and emergence of two Australian biotypes ofS. cannabina. Freshly harvested seeds of both biotypes possessed physical dormancy. A boiling-water scarification treatment (100±2 C) of 5-min duration was the optimum treatment to overcome this dormancy. Once dormancy was broken, the Dalby biotype exhibited a greater germination (93%) compared with the St George biotype (87%). The nondormant seeds of both biotypes showed a neutral photoblastic response to light and dark conditions, with germination marginally improved (6%) under illumination. Maximum germination of both biotypes occurred under an alternating temperature regime of 30/20 and 35/25 C and under constant temperatures of 32 or 35 C, with no germination at 8 or 11 C. Seed germination of both biotypes decreased linearly from 87% to 14% with an increase in moisture stress from 0.0 to −0.8 MPa, with no germination possible at −1.0 MPa. There was a gradual decline in germination for both biotypes when imbibed in a range of salt solutions of 25 to 250 mM, with a 50% reduction in germination occurring at 150 mM. Both biotypes germinated well under a wide range of pH values (4.0 to 10.0), with maximum germination (94%) at pH 9.0. The greatest emergence rate of the Dalby (87%) and St George (78%) biotypes was recorded at a burial depth of 1.0 cm, with no emergence at 16.0 cm. Deep tillage seems to be the best management strategy to stopS. cannabina’s emergence and further infestation of cotton (Gossypium hirsutumL.) fields. The findings of this study will be helpful to cotton agronomists in devising effective, sustainable, and efficient integrated weed management strategies for the control ofS. cannabinain cotton cropping lands.


Sign in / Sign up

Export Citation Format

Share Document