Ability of alleles of PPD1 and VRN1 genes to predict flowering time in diverse Australian wheat (Triticum aestivum) cultivars in controlled environments

2018 ◽  
Vol 69 (11) ◽  
pp. 1061 ◽  
Author(s):  
Maxwell T. Bloomfield ◽  
James R. Hunt ◽  
Ben Trevaskis ◽  
Kerrie Ramm ◽  
Jessica Hyles

Flowering time of wheat (Triticum aestivum L.) is a critical determinant of grain yield. Frost, drought and heat stresses from either overly early or overly late flowering can inflict significant yield penalties. The ability to predict time of flowering from different sowing dates for diverse cultivars across environments in Australia is important for maintaining yield as autumn rainfall events become less reliable. However, currently there are no models that can accurately do this when new cultivars are released. Two major Photoperiod1 and three Vernalisation1 development genes, with alleles identified by molecular markers, are known to be important in regulating phasic development and therefore time to anthesis, in response to the environmental factors of temperature and photoperiod. Allelic information from molecular markers has been used to parameterise models that could predict flowering time, but it is uncertain how much variation in flowering time can be explained by different alleles of the five major genes. This experiment used 13 elite commercial cultivars of wheat, selected for their variation in phenology and in turn allelic variation at the major development genes, and 13 near-isogenic lines (NILs) with matching multi-locus genotypes for the major development genes, to quantify how much response in time to flowering could be explained by alleles of the major genes. Genotypes were grown in four controlled environments at constant temperature of 22°C with factorial photoperiod (long or short day) and vernalisation (±) treatments applied. NILs were able to explain a large proportion of the variation of thermal time to flowering in elite cultivars in the long-day environment with no vernalisation (97%), a moderate amount in the short-day environment with no vernalisation (62%), and less in the short-day (51%) and long-day (47%) environments with vernalisation. Photoperiod was found to accelerate development, as observed in a reduction in phyllochron, thermal time to heading, thermal time to flowering, and decreased final leaf numbers. Vernalisation response was not as great, and rates of development in most genotypes were not significantly increased. The results indicate that the alleles of the five major development genes alone cannot explain enough variation in flowering time to be used to parameterise gene-based models that will be accurate in simulating flowering time under field conditions. Further understanding of the genetics of wheat development, particularly photoperiod response, is required before a model with genetically based parameter estimates can be deployed to assist growers to make sowing-time decisions for new cultivars.

1977 ◽  
Vol 17 (86) ◽  
pp. 417 ◽  
Author(s):  
DF Cameron ◽  
L't Mannetje ◽  
Mannetje L 't

The flowering of accessions from 12 Stylosanthes species was studied in two controlled environment experiments and a glasshouse experiment. In controlled environments photoperiod exerted a strong control over flowering with short day, day neutral and long day responses being recognized. High temperatures generally delayed flowering, increased the node of first flower and reduced the number of inflorescences, but acted as a modifier only of the basic control exerted by photoperiod. With natural photoperiods in the glasshouse, flowering responses were generally consistent with the photoperiod responses observed in controlled environments. The climatic adaptation of Stylosanthes species is discussed in relation to the alternative reproductive strategies of the photoperiod response types.


2021 ◽  
Vol 182 (2) ◽  
pp. 81-88
Author(s):  
B. V. Rigin ◽  
Е. V. Zuev ◽  
А. S. Andreeva ◽  
I. I. Matvienko ◽  
Z. S. Pyzhenkova

Background. Development of early-ripening spring bread wheat (Triticum aestivum L.) cultivars is an important task for Russian breeders. Knowledge of the genetics of ultraearly varieties – sources of valuable genes that determine an earlier-maturing type of plant development –will be used to work out methods for obtaining source material for breeding.Materials and methods. The ultra-early lines Rico (k65588, var. erythrospermum Koern.) and Rimax (k-67257, var. lutescens (Alef.) Mansf.), and cvs. ‘Max’ (k-57181, var. lutescens) and ‘Leningradskaya 6’ (k-64900, var. lutescens) were studied. Alleles of the Vrn and Ppd genes were identified by PCR according to known publications, and genomic DNA was isolated from 3-day-old seedlings by the CTAB method.Results. In the environments of Northwest Russia, the Rimax and Rico lines are characterized by the highest rate of development before heading among the spring wheat accessions from the VIR collection. In the Rimax and Rico genotypes, the Vrn-A1, Vrn-B1, Vrn-D1 and Ppd-D1 genes were found. Genotypes with different alleles of Ppd-D1 and Vrn-B1 were identified in the Rimax line. Under conditions of a long day (18 hours), in the population of F2  (F3 ) Rico × Rimax hybrids, the ratio of phenotypes with a high development rate to all others was observed as 1 : 15 (χ2 1: 15 = 0.64). Under a short day (12 hours), 5 clearly tested groups were identified in F2 with the ratio 1 : 4 : 6 : 4 : 1 (χ2  = 3.03; χ2 0.05 = 9.48), which indicates the manifestation of cumulative polymerization.Conclusion. Each of the Rimax and Rico lines has two pairs of independent duplicated genes that determine a high development rate. Under short-day conditions, these genes can interact like cumulative polymers. The Rimax and Rico lines, due to their high development rate, are valuable source material to be used in breeding for earliness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chenyang Liu ◽  
Qianqian Zhang ◽  
Hong Zhu ◽  
Chunmei Cai ◽  
Shuai Li

CONSTANS-LIKE (COL) genes play important roles in the regulation of plant growth and development, and they have been analyzed in many plant species. However, few studies have examined COL genes in mungbean (Vigna radiata). In this study, we identified and characterized 31 mungbean genes whose proteins contained B-Box domains. Fourteen were designated as VrCOL genes and were distributed on 7 of the 11 mungbean chromosomes. Based on their phylogenetic relationships, VrCOLs were clustered into three groups (I, II, and III), which contained 4, 6, and 4 members, respectively. The gene structures and conserved motifs of the VrCOL genes were analyzed, and two duplicated gene pairs, VrCOL1/VrCOL2 and VrCOL8/VrCOL9, were identified. A total of 82 cis-acting elements were found in the VrCOL promoter regions, and the numbers and types of cis-acting elements in each VrCOL promoter region differed. As a result, the expression patterns of VrCOLs varied in different tissues and throughout the day under long-day and short-day conditions. Among these VrCOL genes, VrCOL2 showed a close phylogenetic relationship with Arabidopsis thaliana CO and displayed daily oscillations in expression under short-day conditions but not long-day conditions. In addition, overexpression of VrCOL2 accelerated flowering in Arabidopsis under short-day conditions by affecting the expression of the flowering time genes AtFT and AtTSF. Our study lays the foundation for further investigation of VrCOL gene functions.


2009 ◽  
Vol 89 (6) ◽  
pp. 1031-1039 ◽  
Author(s):  
A K Bergjord ◽  
A K Bakken ◽  
A O Skjelvåg

The quantitative nature of the vernalization and photoperiod requirements and the interference of plant age with these mechanisms complicate predictions of generative induction and its relation to frost tolerance. This study was designed to dissect further the course of development towards full generative induction and to time the stages in frost tolerance. Two cultivars of winter wheat were regularly sampled from fields at four sites during three winters. The apex stage of development was observed at time of sampling and after 3 subsequent weeks of growth at 18°C, under either short or long days. Level of frost tolerance at sampling was also recorded. No visible change in apex appearance was found at time of sampling, but readiness of plants to initiate generative development was enhanced. Vernalization by low temperatures alone was not enough to induce the plants into generative development or initiate loss of frost tolerance. Short day conditions after sampling delayed the appearance of double ridges by 6-9 wk as compared with long day conditions. The timing of maximum frost tolerance and its subsequent decrease indicated that generative induction under the short day conditions prevailing in field occurred about 1 mo after vernalization saturation.Key words: Triticum aestivum L., frost tolerance, generative induction, vernalization, photoperiod


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6626 ◽  
Author(s):  
Geoffrey Thomson ◽  
James Taylor ◽  
Joanna Putterill

Photoperiodic flowering aligns plant reproduction to favourable seasons of the year to maximise successful production of seeds and grains. However understanding of this process in the temperate legumes of the Fabaceae family, which are important both agriculturally and ecologically, is incomplete. Previous work in the reference legume Medicago truncatula has shown that the FT-like gene MtFTa1 is a potent floral activator. While MtFTa1 is upregulated by long-day photoperiods (LD) and vernalisation, the molecular basis of this is unknown as functional homologues of key regulatory genes present in other species, notably CONSTANS in A. thaliana, have not been identified. In LD MtFTa1 maintains a near constant diurnal pattern of expression unlike its homologue FT in A. thaliana, which has a notable peak in expression at dusk. This suggests a different manner of regulation. Furthermore, M. truncatula possesses other FT-like genes such as two LD induced MtFTb genes which may also act in the regulation of flowering time. MtFTb genes have a diurnal pattern of expression with peaks at both four and sixteen hours after dawn. This study utilises RNA-Seq to analyse the transcriptome of M. truncatula leaves to identify genes which may regulate or be co-expressed with these FT-like genes following a shift from short-day photoperiods to inductive long-days. Specifically this study focuses on the first four hours of the day in the young leaves, which coincides with the first diurnal peak of the FTb genes. Following differential expression analysis at each timepoint, genes which alter their pattern of expression are distinguished from those which just alter their magnitude of expression (and those that do neither). It goes on to categorise these genes into groups with similar patterns of expression using c-means clustering and identifies a number of potential candidate photoperiod flowering time genes for future studies to consider.


2018 ◽  
Author(s):  
Geoffrey Thomson ◽  
James Taylor ◽  
Joanna Putterill

Photoperiodic flowering aligns plant reproduction to favourable seasons of the year to maximise successful production of seeds and grains. However understanding of this process in the temperate legumes of the Fabaceae family, which are important both agriculturally and ecologically, is incomplete. Previous work in the reference legume Medicago truncatula has shown that the FT-like gene MtFTa1 is a potent floral activator. While MtFTa1 is upregulated by long-day photoperiods (LD) and vernalisation, the molecular basis of this is unknown as functional homologues of key regulatory genes present in other species, notably CONSTANS in A. thaliana, have not been identified. In LD MtFTa1 maintains a near constant diurnal pattern of expression unlike its homologue FT in A. thaliana, which has a notable peak in expression at dusk. This suggests a different manner of regulation. Furthermore, M. truncatula possesses other FT-like genes such as two LD induced MtFTb genes which may also act in the regulation of flowering time. MtFTb genes have a diurnal pattern of expression with peaks at both four and sixteen hours after dawn. This study utilises RNA-Seq to analyse the transcriptome of M. truncatula leaves to identify genes which may regulate or be co-expressed with these FT-like genes following a shift from short-day photoperiods to inductive long-days. Specifically this study focuses on the first four hours of the day in the young leaves, which coincides with the first diurnal peak of the FTb genes. Following differential expression analysis at each timepoint, genes which alter their pattern of expression are distinguished from those which just alter their magnitude of expression (and those that do neither). It goes on to categorise these genes into groups with similar patterns of expression using c-means clustering and identifies a number of potential candidate photoperiod flowering time genes for future studies to consider.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1168g-1168 ◽  
Author(s):  
Edward J. Ryder

Genes for flowering time appear to be relatively common in lettuce and other Lactuca species. These include previously described major genes Ef-1 an Ef-2, other genes of discrete effect and genes acting in a quantitative manner. Our goals in studying the flowering time phenomenon are: 1)describe the inheritance of the traits, 2) establish their relationship to each other, and 3) elucidate their evolutionary significance.The PI 175735 (L. serriola) is an accession with narrow leaves, spines and anthocyanin. Its flowering time is daylength related; it is early flowering under long days and late flowering under short days. It was crossed with the late flowering line C-2-1-1, which is homozygous for both late alleles in the Ef system. The F1 is late under short days and early under long days. The F2 population and F3 families were grown under long day conditions in the greenhouse, Segregation in the F2 was 3 early: 1 late. Among F3 families from early plants, segregation was 1 homozygous early: 2 segregating. Within segregating families, the ratio was again 3:1. The evidence suggests a single gene with earliness dominant.


Author(s):  
Nezihe Köksal ◽  
Sara Yasemin ◽  
Aslıhan Özkaya

Photoperiod is one of the environmental signals that controls of the flowering time on bedding plants. Marigold is a bedding plant which includes obligate or facultative short day and day neutral cultivars. Flowering time of these plants, even day neutral cultivars, delay in extreme hot and long day condition in summer. In this study, the effects of photoperiodic conditions (short day and long day) on flowering and growth of two different day neutral marigold cultivars (Discovery Orange and Discovery Yellow) were investigated. Natural day length (14 hours) was considered as long day condition. Short day condition (8 hours) was conducted artificially by darkening treatment. Therefore, duration to first flower bud formation, duration to first flowering, plant canopy height, plant canopy width, lateral branch number, flower number, main peduncle length, main peduncle thickness, root collar thickness, stem thickness, dry weights of plants (root, shoot, total plant) were evaluated. At the end of the experiment, it was determined that short day conditions reduce duration to first flower bud formation and duration to first flowering. The artificial short day conditions resulted as 13 days early flowering in 'Discovery Orange' and 5 days early flowering in 'Discovery Yellow' cultivar.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1168G-1168
Author(s):  
Edward J. Ryder

Genes for flowering time appear to be relatively common in lettuce and other Lactuca species. These include previously described major genes Ef-1 an Ef-2, other genes of discrete effect and genes acting in a quantitative manner. Our goals in studying the flowering time phenomenon are: 1)describe the inheritance of the traits, 2) establish their relationship to each other, and 3) elucidate their evolutionary significance. The PI 175735 (L. serriola) is an accession with narrow leaves, spines and anthocyanin. Its flowering time is daylength related; it is early flowering under long days and late flowering under short days. It was crossed with the late flowering line C-2-1-1, which is homozygous for both late alleles in the Ef system. The F1 is late under short days and early under long days. The F2 population and F3 families were grown under long day conditions in the greenhouse, Segregation in the F2 was 3 early: 1 late. Among F3 families from early plants, segregation was 1 homozygous early: 2 segregating. Within segregating families, the ratio was again 3:1. The evidence suggests a single gene with earliness dominant.


Sign in / Sign up

Export Citation Format

Share Document