scholarly journals Characterization of Mungbean CONSTANS-LIKE Genes and Functional Analysis of CONSTANS-LIKE 2 in the Regulation of Flowering Time in Arabidopsis

2021 ◽  
Vol 12 ◽  
Author(s):  
Chenyang Liu ◽  
Qianqian Zhang ◽  
Hong Zhu ◽  
Chunmei Cai ◽  
Shuai Li

CONSTANS-LIKE (COL) genes play important roles in the regulation of plant growth and development, and they have been analyzed in many plant species. However, few studies have examined COL genes in mungbean (Vigna radiata). In this study, we identified and characterized 31 mungbean genes whose proteins contained B-Box domains. Fourteen were designated as VrCOL genes and were distributed on 7 of the 11 mungbean chromosomes. Based on their phylogenetic relationships, VrCOLs were clustered into three groups (I, II, and III), which contained 4, 6, and 4 members, respectively. The gene structures and conserved motifs of the VrCOL genes were analyzed, and two duplicated gene pairs, VrCOL1/VrCOL2 and VrCOL8/VrCOL9, were identified. A total of 82 cis-acting elements were found in the VrCOL promoter regions, and the numbers and types of cis-acting elements in each VrCOL promoter region differed. As a result, the expression patterns of VrCOLs varied in different tissues and throughout the day under long-day and short-day conditions. Among these VrCOL genes, VrCOL2 showed a close phylogenetic relationship with Arabidopsis thaliana CO and displayed daily oscillations in expression under short-day conditions but not long-day conditions. In addition, overexpression of VrCOL2 accelerated flowering in Arabidopsis under short-day conditions by affecting the expression of the flowering time genes AtFT and AtTSF. Our study lays the foundation for further investigation of VrCOL gene functions.

2020 ◽  
Author(s):  
Chenyang Liu ◽  
Qianqian Zhang ◽  
Hong Zhu ◽  
Chunmei Cai ◽  
Shuai Li

Abstract Background: CONSTANS-LIKE (COL) genes play important roles in the regulation of plant growth and development, and they have been analyzed in many plant species. However, few investigations have examined COL genes in mungbean (Vigna radiata).Results: In this study, we identified and characterized a total 14 of VrCOL genes from mungbean, which distributed on 7 of the 11 mungbean chromosomes. Based on their conserved domains, VrCOLs were clustered into three groups (I, II and III), which contained 4, 5 and 5 members, respectively. The gene structures and conserved motifs of the VrCOL genes were analyzed, and two duplicated gene pairs, VrCOL1/VrCOL2 and VrCOL8/VrCOL9, were identified. A total of 82 cis-acting elements were found in the VrCOL promoter regions, and the numbers and types of cis-acting elements in each VrCOL promoter region differed. As a result, the expression patterns of VrCOLs varied in different tissues, and under long day and short day conations throughout the day. Among these VrCOL genes, VrCOL2 showed a close phylogenetic relationship with Arabidopsis thaliana (A. thaliana) CO and displayed daily oscillations in expression under short day conditions but not long day conditions. In addition, overexpression of VrCOL2 accelerated flowering in A. thaliana under short day conditions by activating the expression of flowering time gene AtFT and AtTSF.Conclusion: Overall, we identified 14 VrCOL genes from mungbean using genome-wide identification. Characteristics and transcription pattern analysis of VrCOL genes revealed their important roles in plant growth and development, and our results suggested that VrCOL2 regulate flowering time under short day conditions in A. thaliana. Our study lays the foundation for further dissection of VrCOL gene functions.


2020 ◽  
Author(s):  
Chenyang Liu ◽  
Qianqian Zhang ◽  
Hong Zhu ◽  
Chunmei Cai ◽  
Shuai Li

Abstract Background CONSTANS-LIKE (COL) genes play important roles in the regulation of plant growth and development, and they have been analyzed in many plant species. However, few investigations have examined COL genes in mungbean (Vigna radiata). Results In this study, we identified and characterized a total 14 of VrCOL genes from mungbean, which distributed on 7 of the 11 mungbean chromosomes. Based on their conserved domains, VrCOLs were clustered into three groups (I, II and III), which contained 4, 5 and 5 members, respectively. The gene structures and conserved motifs of the VrCOL genes were analyzed, and two duplicated gene pairs, VrCOL2/VrCOL5 and VrCOL6/VrCOL9, were identified. A total of 82 cis-acting elements were found in the VrCOL promoter regions, and the numbers and types of cis-acting elements in each VrCOL promoter region differed. As a result, VrCOLs showed distinct expression patterns in different tissues. Among these VrCOL genes, VrCOL2 showed a close phylogenetic relationship with Arabidopsis thaliana (A. thaliana) CO and displayed daily oscillations in expression under short day conditions but not long day conditions. In addition, overexpression of VrCOL2 accelerated flowering in A. thaliana under short day conditions by activating the expression of flowering time gene FT and TSF. Conclusion Overall, we identified 14 VrCOL genes from mungbean using genome-wide identification. Characteristics and transcription pattern analysis of VrCOL genes revealed their important roles in plant growth and development, and our results suggested that VrCOL2 regulate flowering time under short day conditions. Our study lays the foundation for further dissection of VrCOL gene functions.


2021 ◽  
Vol 22 (4) ◽  
pp. 1622
Author(s):  
Yanyan Wang ◽  
Zefeng Zhai ◽  
Yueting Sun ◽  
Chen Feng ◽  
Xiang Peng ◽  
...  

B-BOX proteins are zinc finger transcription factors that play important roles in plant growth, development, and abiotic stress responses. In this study, we identified 15 PavBBX genes in the genome database of sweet cherry. We systematically analyzed the gene structures, clustering characteristics, and expression patterns of these genes during fruit development and in response to light and various hormones. The PavBBX genes were divided into five subgroups. The promoter regions of the PavBBX genes contain cis-acting elements related to plant development, hormones, and stress. qRT-PCR revealed five upregulated and eight downregulated PavBBX genes during fruit development. In addition, PavBBX6, PavBBX9, and PavBBX11 were upregulated in response to light induction. We also found that ABA, BR, and GA3 contents significantly increased in response to light induction. Furthermore, the expression of several PavBBX genes was highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways. Some PavBBX genes were strongly induced by ABA, GA, and BR treatment. Notably, PavBBX6 and PavBBX9 responded to all three hormones. Taken together, BBX proteins likely play major roles in regulating anthocyanin biosynthesis in sweet cherry fruit by integrating light, ABA, GA, and BR signaling pathways.


2019 ◽  
Vol 20 (8) ◽  
pp. 1968 ◽  
Author(s):  
Junmei Kang ◽  
Tiejun Zhang ◽  
Tao Guo ◽  
Wang Ding ◽  
Ruicai Long ◽  
...  

The production of hay and seeds of alfalfa, an important legume forage for the diary industry worldwide, is highly related to flowering time, which has been widely reported to be integrated by FLOWERING LOCUS T (FT). However, the function of FT(s) in alfalfa is largely unknown. Here, we identified MsFTa, an FT ortholog in alfalfa, and characterized its role in flowering regulation. MsFTa shares the conserved exon/intron structure of FTs, and MsFTa is 98% identical to MtFTa1 in Medicago trucatula. MsFTa was diurnally regulated with a peak before the dark period, and was preferentially expressed in leaves and floral buds. Transient expression of MsFTa-GFP fusion protein demonstrated its localization in the nucleus and cytoplasm. When ectopically expressed, MsFTa rescued the late-flowering phenotype of ft mutants from Arabidopsis and M. trucatula. MsFTa over-expression plants of both Arabidopsis and M. truncatula flowered significantly earlier than the non-transgenic controls under long day conditions, indicating that exogenous MsFTa strongly accelerated flowering. Hence, MsFTa functions positively in flowering promotion, suggesting that MsFTa may encode a florigen that acts as a key regulator in the flowering pathway. This study provides an effective candidate gene for optimizing alfalfa flowering time by genetically manipulating the expression of MsFTa.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Chenyang Liu ◽  
Dongliang Yuan ◽  
Tong Liu ◽  
Mengge Xing ◽  
Wenying Xu ◽  
...  

RWP-RK proteins are important factors involved in nitrate response and gametophyte development in plants, and the functions of RWP-RK proteins have been analyzed in many species. However, the characterization of peanut RWP-RK proteins is limited. In this study, we identified 16, 19, and 32 RWP-RK members from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively, and investigated their evolution relationships. The RWP-RK proteins were classified into two groups, RWP-RK domain proteins and NODULE-INCEPTION-like proteins. Chromosomal distributions, gene structures, and conserved motifs of RWP-RK genes were compared among wild and cultivated peanuts. In addition, we identified 12 orthologous gene pairs from the two wild peanut species, 13 from A. duranensis and A. hypogaea, and 13 from A. ipaensis and A. hypogaea. One, one, and seventeen duplicated gene pairs were identified within the A. duranensis, A. ipaensis, and A. hypogaea genomes, respectively. Moreover, different numbers of cis-acting elements in the RWP-RK promoters were found in wild and cultivated species (87 in A. duranensis, 89 in A. ipaensis, and 92 in A. hypogaea), and as a result, many RWP-RK genes showed distinct expression patterns in different tissues. Our study will provide useful information for further functional and evolutionary analysis of the RWP-RK genes.


2019 ◽  
Vol 71 (3) ◽  
pp. 986-996 ◽  
Author(s):  
Tanja Seibert ◽  
Christin Abel ◽  
Vanessa Wahl

Abstract Solanaceae is a family of flowering plants that includes agricultural species such as tomato (Solanum lycopersicum), eggplant (S. melongena), pepper (Capsicum annuum), and potato (S. tuberosum). The transition from the vegetative to reproductive stage has been extensively investigated in tomato as it affects fruit yield. While potato has mainly been studied with regards to the formation of storage organs, control of flowering time is a subject of increasing interest as development of true seeds is becoming more important for future breeding strategies. Here, we describe a robust growth regime for synchronized development of S. tuberosum ssp. andigena. Using SEM to analyse the developmental stages of the shoot apical meristem (SAM) throughout the floral transition, we show that andigena is a facultative long-day plant with respect to flowering. In addition, we identify the flower meristem identity gene MACROCALYX (StMC) as a marker to distinguish between the vegetative and reproductive stages. We show that the expression of WUSCHEL HOMEOBOX 9 (StWOX9) and ANANTHA (StAN) are specific to the inflorescence meristem and flower meristems in the cyme, respectively. The expression patterns of homologs of Arabidopsis flowering-time regulators were studied, and indicated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (StSOC1) and StFD might regulate flowering similar to other plant species.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Qiang Zhang ◽  
Lan Shen ◽  
Deyong Ren ◽  
Jiang Hu ◽  
Li Zhu ◽  
...  

The chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins regulate the expression of chloroplast or mitochondrial genes that influence plant growth and development. Although 14 CRM domain proteins have previously been identified in rice, there are few studies of these gene expression patterns in various tissues and under abiotic stress. In our study, we found that 14 CRM domain-containing proteins have a conservative motif1. Under salt stress, the expression levels of 14 CRM genes were downregulated. However, under drought and cold stress, the expression level of some CRM genes was increased. The analysis of gene expression patterns showed that 14 CRM genes were expressed in all tissues but especially highly expressed in leaves. In addition, we analyzed the functions of OsCFM2 and found that this protein influences chloroplast development by regulating the splicing of a group I and five group II introns. Our study provides information for the function analysis of CRM domain-containing proteins in rice.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6420 ◽  
Author(s):  
Shengji Wang ◽  
Chunlai Zhang ◽  
Jing Zhao ◽  
Renhua Li ◽  
Jinhui Lv

Genes encoding pseudo-response regulator (PRR) proteins play significant roles in plant circadian clocks. In this study, four genes related to flowering time were isolated from Chrysanthemum morifolium. Phylogenetic analysis showed that they are highly homologous to the counterparts of PRRs of Helianthus annuus and named as CmPRR2, CmPRR7, CmPRR37, and CmPRR73. Conserved motifs prediction indicated that most of the closely related members in the phylogenetic tree share common protein sequence motifs, suggesting functional similarities among the PRR proteins within the same subtree. In order to explore functions of the genes, we selected two Chrysanthemum varieties for comparison; that is, a short-day sensitive Zijiao and a short-day insensitive Aoyunbaixue. Compared to Aoyunbaixue, Zijiao needs 13 more days to complete the flower bud differentiation. Evidence from spatio-temporal gene expression patterns demonstrated that the CmPRRs are highly expressed in flower and stem tissues, with a growing trend across the Chrysanthemum developmental process. In addition, we also characterized the CmPRRs expression patterns and found that CmPRRs can maintain their circadian oscillation features to some extent under different photoperiod treatment conditions. These lines of evidence indicated that the four CmPRRs undergo circadian oscillation and possibly play roles in regulating the flowering time of C. morifolium.


Sign in / Sign up

Export Citation Format

Share Document