Excess cation concentrations in shoots and roots of pasture species of importance in south-eastern Australia

2004 ◽  
Vol 44 (9) ◽  
pp. 883 ◽  
Author(s):  
J. Braschkat ◽  
P. J. Randall

Excess cation concentrations (total cations – total inorganic anions) are reported for roots and shoots of 16 plant species of importance in pastures in south-eastern Australia. This information is required for the calculation of acidification in grazed pasture systems. The excess cation concentrations for shoots at flowering were [cmol(+)/kg]: perennial grasses — Lolium perenne (perennial ryegrass) 50, Phalaris aquatic (phalaris) 51, Danthonia richardsonii (wallaby grass) 30, Dactylus glomerata (cocksfoot) 62, Holcus lanatus (Fog grass) 60; annual grasses — Lolium rigidum 29, Vulpia bromoides (vulpia) 40, Hordeum leporinum (barley grass) 46, Bromus mollis (soft brome) 59; perennial legumes — Medicago sativa (lucerne) 115, Trifolium repens (white clover) 147; annual legumes — Trifolium subterraneum (subterranean clover) 142, Medicago truncatula (barrel medic) 114, Ornithopus sativus (serradella) 137; weeds — Arctotheca calendula (cape weed) 165, Echium plantagineum (Paterson’s curse) 169. Values for roots were in the same order as shoots in vulpia and wallaby grass but lower for the other species, varying between 26 and 62% of the shoot value in grasses and 29 and 49% in legumes. For a subset of 4 legumes and 3 grasses, the excess cation concentrations in shoots were measured over the main production period in spring. Excess cation concentrations generally declined during the season, with the change being relatively larger in grasses than legumes.


2001 ◽  
Vol 52 (3) ◽  
pp. 351 ◽  
Author(s):  
Meredith L. Mitchell ◽  
T. B. Koen ◽  
W. H. Johnston ◽  
D. B. Waterhouse

This paper reports the results of an initial evaluation of a large collection of Australian perennial native grasses. The overall aim of the research was to identify accessions that may be useful for pastoral purposes and for controlling land degradation on hill-lands in the high (>500 mm) rainfall zone of south-eastern Australia. Accessions (807) representing 37 target species were established in spaced plant nurseries at Rutherglen and Wagga Wagga. Dactylis glomerata L. cv. Porto and Eragrostis curvula (Schrad) Nees. Complex cv. Consol were established as comparator (control) species. A range of attributes was observed over a 2-year period (19900—1992), including persistence, vigour, productivity, palatability, morphology, and characteristics related to seed production. Accessions were initially culled on the basis of their persistence. Data for a range of attributes were separately analysed using pattern analysis to provide a broad overview of the performance and characteristics of the remaining accessions. A number of selection criteria were applied which resulted in selection of a promising group of 20 accessions (12 species from 8 genera). The promising group of accessions will be evaluated further at field sites typical of hilly landscapes in the 500mp;mdash;600 mm rainfall zone of south-eastern Australia.



2019 ◽  
Vol 70 (2) ◽  
pp. 147 ◽  
Author(s):  
Sajid Latif ◽  
Saliya Gurusinghe ◽  
Paul A. Weston ◽  
William B. Brown ◽  
Jane C. Quinn ◽  
...  

Mixed farming systems have traditionally incorporated subterranean clover (Trifolium subterraneum L.) and lucerne (Medicago sativa L.) as key components of the pasture phase across south-eastern Australia. However, poor adaptation of subterranean clover to acidic soils, insufficient and inconsistent rainfall, high input costs, soil acidification and the emergence of herbicide-resistant weeds have reduced efficacy of some traditional clover species in recent years. To overcome these challenges, numerous novel pasture species have been selectively improved and released for establishment in Australia. Despite their suitability to Australian climate and soils, limited knowledge exists regarding their weed-suppressive ability in relation to establishment and regeneration. Field trials were therefore conducted over 3 years in New South Wales to evaluate the suppressive potential of selected pasture legume species and cultivars as monocultures and in mixed stands against dominant annual pasture weeds. Pasture and weed biomass varied significantly between pasture species when sown as monocultures, but mixtures of several species did not differ with regard to establishment and subsequent weed infestation. Arrowleaf clover (T. vesiculosum Savi.) and biserrula (Biserrula pelecinus L.) cv. Casbah showed improved stand establishment, with higher biomass and reduced weed infestation compared with other pasture species. Generally, weed suppression was positively correlated with pasture biomass; however, yellow serradella (Ornithopus compressus L.) cv. Santorini exhibited greater weed suppression than other pasture legumes while producing lower biomass, thereby suggesting a mechanism other than competition for resources affecting weed-suppressive ability. Over the period 2015–17, arrowleaf clover and biserrula cv. Casbah were generally the most consistent annual pasture legumes with respect to yearly regeneration and suppression of annual pasture weed species.



2001 ◽  
Vol 52 (3) ◽  
pp. 343 ◽  
Author(s):  
W. H. Johnston ◽  
Meredith L. Mitchell ◽  
T. B. Koen ◽  
W. E. Mulham ◽  
D. B. Waterhouse

This paper reports on the collection phase of a research program which aimed to identify Australian native grasses that may be useful for pastoral purposes and for controlling land degradation on hill-lands in the high (>500 mm) rainfall zone of south-eastern Australia. Live plants of 37 target species were collected along a number of transects, and at specific locations, in New South Wales and Victoria. The collection sites were generally along public roads, and were chosen for their vegetation diversity. Each collection site was marked on a 1: 250000 topographic map, and detailed notes were taken of the native vegetation, geology, soil types, land use, and other features. Surface (00—10 cm) soil samples were collected at most sites and analysed for phosphorus, pH CaCl 2 , electrical conductivity, and particle size distribution. A total of 807 accessions were collected from 210 locations. At most collection sites, soils were acidic (median pH 5.6); soil phosphorus (Olsen) was in the low range (<8.5 mg/kg); and the target genera occurred with a low frequency (half of the sites yielded 3 accessions or less). Although genera collected in the study could be ranked on the basis of the mean pH of their collection sites, they all tolerated a considerable soil pH range (of about 2mp;mdash;5 pH units). Allowing root and shoot growth to recommence by growing collected plants for a short period in coarse sand considerably improved establishment success. Accessions collected in this study will be further evaluated.



2005 ◽  
Vol 56 (11) ◽  
pp. 1261 ◽  
Author(s):  
T. P. Bolger ◽  
A. R. Rivelli ◽  
D. L. Garden

Perennial grasses are the key to the economic and environmental sustainability of pastures for livestock grazing in south-eastern Australia. Mortality of perennial grasses can occur during drought periods and there is anecdotal evidence of differences in drought resistance among species, but information on the basic ecophysiological responses of these species to drought is lacking. An experiment was conducted to determine the responses of 7 native and 3 introduced perennial grass species to continuous drought. Leaf survival during severe drought varied among the species nearly 4-fold, from 11 to 40 days, and was considered a measure of their overall drought resistance. All of the species had good dehydration tolerance, so the differences in drought resistance were related more to their dehydration avoidance traits, specifically to the amount of water available to the plant at the point where plant transpiration became minimal. The native species had both the longest and shortest leaf survival periods, with the introduced species ranking intermediate. Species exhibited various morphological traits that contributed to dehydration avoidance during severe drought, including leaf folding or rolling, rapid leaf shedding, and large amounts of cuticular wax. The results are discussed in terms of their implications for perennial grass persistence in south-eastern and in south-western Australia.



2003 ◽  
Vol 43 (10) ◽  
pp. 1211 ◽  
Author(s):  
S. G. Clark ◽  
E. A. Austen ◽  
T. Prance ◽  
P. D. Ball

Climate variability is a major constraint to farming in south-eastern Australia and one that is out of the farmers' control. However, a better understanding of long-term climate variability would be beneficial for on-farm management decisions. A series of long-term simulations were undertaken with the GrassGro decision support tool to determine the effect of climate variability on pasture and animal production at 6 locations in south-eastern Australia. The simulations ran from 89 to 119 years using daily weather records from each location. All simulations were for spring-lambing flocks of medium sized Merino ewes stocked at above-average district stocking rates, grazing well-fertilised, perennial grass–subterranean clover pastures. Annual rainfall total and, in particular, the distribution of rainfall during the year, were found to be more important than other weather variables in determining the amount of pasture grown in a year. The timing of the season opening rains (autumn break) was most important. The localities varied in their responses to climate variability, particularly in the timing of the autumn break; the pasture growth response to winter rainfall; and the relationship between rainfall and animal production.



2005 ◽  
Vol 45 (4) ◽  
pp. 369 ◽  
Author(s):  
P. M. Dowling ◽  
D. R. Kemp ◽  
P. D. Ball ◽  
C. M. Langford ◽  
D. L. Michalk ◽  
...  

Declining grassland productivity is a major concern in southern temperate Australia. Continuous grazing is thought to be a primary contributor to this decline, which is associated with the loss of perennial grasses. Landholders are evaluating grazing management strategies that might curb the loss of perennials and increase long-term productivity. This study reports on a comparison between continuous grazing and time-control grazing with sheep and cattle using a paired-paddock design at 5 locations in south-eastern Australia (lat. 30–42°S) over 6 years (1994–99). Pasture herbage mass, grassland species composition and basal cover of perennial grasses were assessed at 6-monthly intervals. Species abundance data were analysed by ANOVA, ordination (multi-dimensional scaling) and splining procedures to assess comparative trends between the 2 management treatments at each site. Species were categorised into major functional groups for analysis. Over all 5 sites there were few consistent differences between management treatments (continuous grazing v. time-control grazing). Basal cover was greater on the time-control grazing management compared with continuous grazing for most of the experimental period at 3 sites, but the initial values were also greater, resulting in a non-significant management × time interaction. Based on this study, we conclude that there was no apparent medium-term benefit of a multi-paddock rotational (time-control grazing) grazing system over continuous grazing for encouraging and maintaining a favourable botanical composition. The benefits for land managers from employing systems such as time-control grazing may accrue through other mechanisms. The study also highlights some of the difficulties with conducting on-farm paired-paddock research.





2007 ◽  
Vol 47 (2) ◽  
pp. 136 ◽  
Author(s):  
R. A. Culvenor ◽  
S. P. Boschma ◽  
K. F. M. Reed

Three winter-active populations of phalaris (Phalaris aquatica L.), selected over two generations for improved persistence under grazing, were evaluated with commercial cultivars of phalaris and other temperate perennial grasses from 1999–2003 in three environments of south-eastern Australia as part of a program to develop a cultivar for more sustainable pastures and to assess genotype × environment interaction. Grazed sites were located at Bulart in western Victoria, and Rye Park on the Southern Tablelands and Tamworth on the North West Slopes of New South Wales. At the conclusion of the experiment, the frequency of live plant base was highest at Rye Park despite soil acidity and drought. Significant variance among half-sib families in each population was also observed most frequently at this site. Frequency was intermediate at Bulart but lower than expected considering high soil fertility, probably because of high grazing pressure. Frequency was lowest at Tamworth where severe drought occurred from 2001 onwards. There was significant genotype × environment interaction for frequency among half-sib families. Significant common family variance for frequency across the Bulart and Rye Park sites was demonstrated, but not between Tamworth and either of the other sites in later years. The relationship between winter herbage mass potential and persistence differed with population and site, and was negative for one population at Bulart but positive for another population at Tamworth. Mean persistence of all families was 30% higher than winter-active controls at Rye Park and at least 40% higher at Bulart. Phalaris generally persisted better than cultivars of tall fescue (Festuca arundinacea Schreb.), cocksfoot (Dactylis glomerata L.) and perennial ryegrass (Lolium perenne L.) with some exceptions, particularly at Bulart. Development of a winter-active phalaris cultivar with improved persistence under grazing was considered possible for the Southern Tablelands and western Victorian environments with these populations but a separate program using additional germplasm will be needed for the North West Slopes environment.



2013 ◽  
Vol 64 (1) ◽  
pp. 61 ◽  
Author(s):  
Matthew J. Bell ◽  
Richard J. Eckard ◽  
Matthew T. Harrison ◽  
James S. Neal ◽  
Brendan R. Cullen

Grazed pastures in south-eastern Australia are typically based on temperate (C3) species, such as perennial ryegrass (Lolium perenne). With predictions of warming to occur in this region, there has been growing interest in the performance of more heat-tolerant and deep-rooted subtropical (C4) pasture grasses, such as kikuyu (Pennisetum clandestinum). This study used an existing pasture model to estimate the production of kikuyu compared with the commonly used perennial ryegrass at seven sites in south-eastern Australia, using an historical baseline climate scenario between 1971 and 2010, and the daily temperature of the baseline scenario adjusted by +1, +2, and +3°C to represent potential warming in the future. The seven sites were chosen to represent the range of climatic zones and soil types in the region. First, the model predictions of monthly kikuyu dry matter (DM) production were validated with measured data at Taree, Camden, and Bega, with results showing good agreement. Second, pasture production (t DM/ha), metabolisable energy (ME, MJ/kg DM) content, and ME yield (GJ/ha) were predicted using the baseline and warmer climate scenarios. The study was based on 56 simulations of the factorial arrangement of seven sites × four temperature scenarios × two pastures. The month and annual ME yield of a kikuyu–subterranean clover (Trifolium subterraneum) pasture and a perennial ryegrass–subterranean clover pasture were compared. This study showed that in summer-dominant rainfall locations, where the average maximum temperature is >23°C, kikuyu was a more productive pasture species than perennial ryegrass. In winter-dominant rainfall locations during the warmer months of December–March, kikuyu can provide a useful source of ME when perennial ryegrass is less productive. With warming of up to 3°C at the winter-dominant rainfall sites, the average ME yield per year of kikuyu was predicted to surpass that of perennial ryegrass, but inter-annual variation in kikuyu production was higher. The nutritive value, seasonal distribution of growth, total annual production, and its variability are all important considerations for producers when selecting pasture species.





Sign in / Sign up

Export Citation Format

Share Document