Climate variability effects on simulated pasture and animal production in the perennial pasture zone of south-eastern Australia.1. Between year variability in pasture and animal production

2003 ◽  
Vol 43 (10) ◽  
pp. 1211 ◽  
Author(s):  
S. G. Clark ◽  
E. A. Austen ◽  
T. Prance ◽  
P. D. Ball

Climate variability is a major constraint to farming in south-eastern Australia and one that is out of the farmers' control. However, a better understanding of long-term climate variability would be beneficial for on-farm management decisions. A series of long-term simulations were undertaken with the GrassGro decision support tool to determine the effect of climate variability on pasture and animal production at 6 locations in south-eastern Australia. The simulations ran from 89 to 119 years using daily weather records from each location. All simulations were for spring-lambing flocks of medium sized Merino ewes stocked at above-average district stocking rates, grazing well-fertilised, perennial grass–subterranean clover pastures. Annual rainfall total and, in particular, the distribution of rainfall during the year, were found to be more important than other weather variables in determining the amount of pasture grown in a year. The timing of the season opening rains (autumn break) was most important. The localities varied in their responses to climate variability, particularly in the timing of the autumn break; the pasture growth response to winter rainfall; and the relationship between rainfall and animal production.


2001 ◽  
Vol 52 (3) ◽  
pp. 329 ◽  
Author(s):  
G. D. Li ◽  
K. R. Helyar ◽  
M. K. Conyers ◽  
B. R. Cullis ◽  
P. D. Cregan ◽  
...  

A long-term trial, known as ‘managing acid soils through efficient rotations’ (MASTER), commenced in 1992 to develop and demonstrate a cropping system that is economically viable on the highly acid soils of the traditional permanent pasture region in south-eastern Australia, so that their fertility is sustained or improved. There were 2 permanent pasture systems and 2 pasture–crop rotations, each with and without lime. This paper reports the effect of lime on crop production over the first cycle (6 years). On annual pasture–crop rotations, lime significantly increased the dry matter production at anthesis and grain yields of wheat (cv. Dollarbird) compared with the unlimed treatments. Averaged across years from 1992 to 1997 (excluding the severe drought year 1994), wheat crops produced 1.6 t/ha more grain on the limed treatments than on the unlimed treatments (3.6 v. 2.0 t/ha). On perennial pasture–crop rotations, the lime effects varied with crops grown at each phase and year. For example, despite being tolerant of acidity, oats (cv. Yarran) responded to lime in 1996. Likewise, triticale (cv. Abacus) responded to lime in 1997. Wheat (cv. Dollarbird) that is moderately tolerant to acidity responded to lime in phase 6 from 1992 to 1997 excluding 1994 (3.5 v. 1.7 t/ha). Acid-tolerant wheat varieties, triticale, and narrow-leaf lupins are considered the most viable crops for the soil and climatic conditions encountered in this high rainfall (5000—800 mm per annum) area of south-eastern Australia.



2019 ◽  
Vol 70 (2) ◽  
pp. 147 ◽  
Author(s):  
Sajid Latif ◽  
Saliya Gurusinghe ◽  
Paul A. Weston ◽  
William B. Brown ◽  
Jane C. Quinn ◽  
...  

Mixed farming systems have traditionally incorporated subterranean clover (Trifolium subterraneum L.) and lucerne (Medicago sativa L.) as key components of the pasture phase across south-eastern Australia. However, poor adaptation of subterranean clover to acidic soils, insufficient and inconsistent rainfall, high input costs, soil acidification and the emergence of herbicide-resistant weeds have reduced efficacy of some traditional clover species in recent years. To overcome these challenges, numerous novel pasture species have been selectively improved and released for establishment in Australia. Despite their suitability to Australian climate and soils, limited knowledge exists regarding their weed-suppressive ability in relation to establishment and regeneration. Field trials were therefore conducted over 3 years in New South Wales to evaluate the suppressive potential of selected pasture legume species and cultivars as monocultures and in mixed stands against dominant annual pasture weeds. Pasture and weed biomass varied significantly between pasture species when sown as monocultures, but mixtures of several species did not differ with regard to establishment and subsequent weed infestation. Arrowleaf clover (T. vesiculosum Savi.) and biserrula (Biserrula pelecinus L.) cv. Casbah showed improved stand establishment, with higher biomass and reduced weed infestation compared with other pasture species. Generally, weed suppression was positively correlated with pasture biomass; however, yellow serradella (Ornithopus compressus L.) cv. Santorini exhibited greater weed suppression than other pasture legumes while producing lower biomass, thereby suggesting a mechanism other than competition for resources affecting weed-suppressive ability. Over the period 2015–17, arrowleaf clover and biserrula cv. Casbah were generally the most consistent annual pasture legumes with respect to yearly regeneration and suppression of annual pasture weed species.



2007 ◽  
Vol 58 (12) ◽  
pp. 1167 ◽  
Author(s):  
R. J. Eckard ◽  
D. F. Chapman ◽  
R. E. White

Nitrogen (N) fertiliser use on dairy pastures in south-eastern Australia has increased exponentially over the past 15 years. Concurrently, imports of supplementary feed onto dairy farms have increased, adding further nutrients to the system. These trends raise questions about the environmental effects of higher nutrient inputs to dairy farms. To gauge possible effects, annual N balances were calculated from an experiment where N inputs and losses were measured for 3 years from non-irrigated grass/clover pastures receiving either no N fertiliser (Control) or 200 kg N/ha applied annually as ammonium nitrate or urea. Estimated total N inputs, averaged over the 3 years, were 154, 314, and 321 kg N/ha.year for the control, ammonium nitrate, and urea treatments, respectively, while N outputs in meat and milk were 75, 99, and 103 kg N/ha.year, respectively. The corresponding calculated N surplus was 79, 215, and 218 kg N/ha.year for the 3 treatments, respectively, and the ratio of product N/total-N inputs for the 3 treatments ranged from 50% in the control to 32% for both N treatments. Total N losses averaged 56, 102, and 119 kg N/ha.year, leaving a positive N balance of 23, 112, and 99 kg N/ha.year for the control, ammonium nitrate, and urea treatments, respectively. The ratio of product N/total-N inputs or the N surplus may be useful in monitoring the efficiency of conversion of N into animal products and the potential environmental effect at a whole-farm scale. However, additional decision support or modelling tools are required to provide information on specific N losses for a given set of conditions and management inputs. Given the large range in N losses there is opportunity for improving N-use efficiency in dairy pastures through a range of management practices and more tactical use of grain and N fertiliser.



2006 ◽  
Vol 57 (10) ◽  
pp. 1057 ◽  
Author(s):  
G. D. Li ◽  
K. R. Helyar ◽  
M. K. Conyers ◽  
L. J. C. Castleman ◽  
R. P. Fisher ◽  
...  

‘Managing Acid Soils Through Efficient Rotations (MASTER)’ is a long-term pasture–crop rotation experiment commenced in 1992. One of the objectives was to demonstrate the extent of crop, pasture, and animal responses to lime application on a typical acidic soil in the 500–800 mm rainfall zone of south-eastern Australia. Two types of pastures (perennial v. annual pastures) with or without lime application were established in 1992. Fifteen- to eighteen-month-old Merino hoggets were used as test animals and were changed annually. This paper reports the results of sheep responses to liming from the 4 continuous pasture treatments over 6 years from 1992 to 1997. The stocking rate was the same on all plots within a treatment during each rotation period, but was varied between treatments based on the pasture availability and sheep body condition. The most important findings from this study are that the limed treatments carried 29% and 27% more stock (up to 4 DSE/ha) than the unlimed treatments for perennial and annual pastures, respectively. As a result, the limed perennial pastures produced 27% more liveweight gain (62 kg/ha.year) and 28% more greasy wool (13 kg/ha.year) than unlimed perennial pastures, whereas the limed annual pastures produced 34% more liveweight gain (77 kg/ha.year) and 24% more greasy wool (11 kg/ha.year) than unlimed annual pastures. The significant responses to lime in liveweight and wool production were detected from the second growing season after the pastures were established. The increased sheep productivity on the limed treatment was due to a combination of increased pasture production and improved pasture quality. Perennial pastures showed a slight advantage in wool production, but not in liveweight gain. However, the seasonal variation of liveweight was greater on annual pastures than on perennial pastures. The larger variation in liveweight change could lead to more adverse effects on wool quality especially at high grazing pressures. Grazing management can be used to manipulate pasture and animal productivity to increase profits from lime use.



1975 ◽  
Vol 2 (2) ◽  
pp. 135 ◽  
Author(s):  
K Myers

Rabbits in subalpine areas in south-eastern Australia show a marked avidity for sodium salts during the spring and early summer months. During that period rabbit populations may be controlled by allowing access to soft wooden meranti pegs impregnated with sodium chloride and sodium luoroacetate (poison 1080). If the pegs are left out as permanent bait stations they produce long-term effective control. The method should be applicable to other areas in Australia where soil sodium is very low.



2002 ◽  
Vol 29 (4) ◽  
pp. 329 ◽  
Author(s):  
Rodney van der Ree

The geographic range of the squirrel glider (Petaurus norfolcensis) in south-eastern Australia largely corresponds with fertile soils highly suited for agriculture. As a consequence of extensive clearing for agriculture, the conservation of P. norfolcensis in south-eastern Australia is now reliant on a mosaic of many fragmented and isolated patches of woodland and forest. In this study, I investigated the population dynamics of P. norfolcensis in an agricultural landscape where most remnant woodland occurs as linear strips along roadsides, unused road reserves and watercourses. A total of 251 gliders were trapped 1343 times within the linear habitats between December 1996 and November 1998. Gliders were resident within the linear strips at 0.95–1.54 individuals ha–1, a density equal to, or greater than, that recorded elsewhere for the species in continuous forest. All adult females were reproductively active and the mean natality rate was 1.9 young per adult female per year. Overall, the population age-structure appeared to be stable. While currently supporting a stable, high-density population, the long-term viability of these remnants as habitat is not assured because roadside reserves are narrow, easily fragmented and subjected to a host of deleterious processes causing ongoing habitat loss and degradation.



Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 799 ◽  
Author(s):  
Susan E. Orgill ◽  
Jason R. Condon ◽  
Mark K. Conyers ◽  
Stephen G. Morris ◽  
Brian W. Murphy ◽  
...  

In the present field survey, 72 sites were sampled to assess the effect of climate (Monaro, Boorowa and Coleambally regions) and parent material (Monaro region only; basalt and granite) on soil organic carbon (OC) under perennial pastures. In the higher-rainfall zone (Monaro and Boorowa; >500mm mean annual rainfall), OC stocks under introduced and native perennial pastures were compared, whereas in the lower-rainfall zone (Coleambally; <500mm mean annual rainfall) OC stocks under crops and pastures were compared. Carbon fractions included total OC (TOC), particulate OC (POC), resistant OC (ROC) and humic OC (HUM). Higher OC stocks were associated with higher spring and summer rainfall and lower annual temperatures. Within a climatic zone, parent material affected the stock of OC fractions in the 0–30cm soil layer. Within a climatic zone, when grouped by parent material, there was no difference in OC stock with vegetation type. There were significant correlations between soil factors associated with parent material and OC concentration, including negative correlations between SiO2 and HUM (P<0.05) and positive correlations between cation exchange capacity and TOC, POC and ROC (P<0.01). TOC was also positively correlated with total nitrogen (N) and available sulfur (S; P<0.05), indicating organic matter in soil is important for N and S supply for plant production in the studied regions, and vice versa. Although ensuring adequate available S may increase OC stocks in south-eastern Australia, the large stock of OC in the soil under perennial pastures, and the dominating effect of climate and parent material on this stock, may mean that modest increases in soil OC due to management factors go undetected.



1954 ◽  
Vol 5 (3) ◽  
pp. 448 ◽  
Author(s):  
RG Downes

A theory is presented suggesting that during the Recent Arid Period the rainfall was approximately half that of the present day and enabled cyclic salt to be accumulated in areas in south-eastern Australia, where it does not 'accumulate at present. The salinization and subsequent desalinization during the wetter conditions since the Arid Period have operated with varying degrees of intensity to produce solods, solodic and solonized soils over large areas. However, irrespective of the degree of intensity, some of the pre-Arid soils because of their chemical or physical properties have been able to resist these processes and remain unaffected. Five "pedogenetic zones" have been defined according to the degrees of intensity with which the salinization and desalinization processes are thought to have operated, and it is found that soil distribution and morphology is correlated with these defined zones. The zone in which the effect has been most intense has an average annual rainfall at present of between 20 and 30 in., and the most widespread soils, those formerly called red and yellow podzolics, are solodic soils and solods. The theory provides a reasonable explanation for the anoxalous distribution of soils within the "podzol" zone where those showing the greatest degree of horizon differentiation (solods and solodic soils) occur in the driest parts. In addition, the postulated processes for the formation of the soils provide a reason why molybdenum deficiency is so common on these soils in zone 3.



Sign in / Sign up

Export Citation Format

Share Document