salinity management
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2661
Author(s):  
Nigel W. T. Quinn ◽  
Michael K. Tansey ◽  
James Lu

Model selection for water quality forecasting depends on many factors including analyst expertise and cost, stakeholder involvement and expected performance. Water quality forecasting in arid river basins is especially challenging given the importance of protecting beneficial uses in these environments and the livelihood of agricultural communities. In the agriculture-dominated San Joaquin River Basin of California, real-time salinity management (RTSM) is a state-sanctioned program that helps to maximize allowable salt export while protecting existing basin beneficial uses of water supply. The RTSM strategy supplants the federal total maximum daily load (TMDL) approach that could impose fines associated with exceedances of monthly and annual salt load allocations of up to $1 million per year based on average year hydrology and salt load export limits. The essential components of the current program include the establishment of telemetered sensor networks, a web-based information system for sharing data, a basin-scale salt load assimilative capacity forecasting model and institutional entities tasked with performing weekly forecasts of river salt assimilative capacity and scheduling west-side drainage export of salt loads. Web-based information portals have been developed to share model input data and salt assimilative capacity forecasts together with increasing stakeholder awareness and involvement in water quality resource management activities in the river basin. Two modeling approaches have been developed simultaneously. The first relies on a statistical analysis of the relationship between flow and salt concentration at three compliance monitoring sites and the use of these regression relationships for forecasting. The second salt load forecasting approach is a customized application of the Watershed Analysis Risk Management Framework (WARMF), a watershed water quality simulation model that has been configured to estimate daily river salt assimilative capacity and to provide decision support for real-time salinity management at the watershed level. Analysis of the results from both model-based forecasting approaches over a period of five years shows that the regression-based forecasting model, run daily Monday to Friday each week, provided marginally better performance. However, the regression-based forecasting model assumes the same general relationship between flow and salinity which breaks down during extreme weather events such as droughts when water allocation cutbacks among stakeholders are not evenly distributed across the basin. A recent test case shows the utility of both models in dealing with an exceedance event at one compliance monitoring site recently introduced in 2020.


2021 ◽  
Vol 13 (12) ◽  
pp. 6658
Author(s):  
Nigel W. T. Quinn ◽  
James D. Oster

The Sustainable Groundwater Management Act (SGMA) of 2014 and the Central Valley Salinity Alternatives for Long-Term Sustainability (CVSALTS) initiative were conceived to reverse years of inaction on the over-pumping of groundwater and salination of rivers that both threaten agricultural sustainability in the State of California. These largely stakeholder-led, innovative policy actions were supported by modern tools of remote sensing and Geographic Information System technology that allowed stakeholders to make adjustments to existing resource management and jurisdictional boundaries to form policy-mandated Groundwater Sustainability Agencies (GSAs) and Salinity Management Areas (SMAs) to address future management responsibilities. Additional resources mobilized by the California Department of Water Resources (CDWR) and other water resource and water quality management agencies have been effective in encouraging the use of spreadsheet accounting and numerical simulation models to develop robust and coherent quantitative understanding of the current state and likely problems that will be encountered to achieve resource sustainability. This activity has revealed flaws and inconsistencies in the conceptual models underpinning this activity. Two case studies are described that illustrate the disparity in the challenges faced by GSAs in subregions charged with developing consensus-based Groundwater Sustainability Plans (GSPs). These case studies also illustrate the unique aspect of SGMA: that alongside mandates and guidelines being imposed statewide, local leadership and advocacy can play an important role in achieving long-term SGMA and CVSALTS goals.


2021 ◽  
Vol 193 (5) ◽  
Author(s):  
Sophie Thiam ◽  
Grace B. Villamor ◽  
Laurice C. Faye ◽  
Jean Henri Bienvenue Sène ◽  
Badabate Diwediga ◽  
...  

AbstractSoil salinity is a major issue causing land degradation in coastal areas. In this study, we assessed the land use and soil salinity changes in Djilor district (Senegal) using remote sensing and field data. We performed land use land cover changes for the years 1984, 1994, 2007, and 2017. Electrical conductivity was measured from 300 soil samples collected at the study area; this, together with elevation, distance to river, Normalized Difference Vegetation Index (NDVI), Salinity Index (SI), and Soil-Adjusted Vegetation Index (SAVI), was used to build the salinity model using a multiple regression analysis. Supervised classification and intensity analysis were applied to determine the annual change area and the variation of gains and losses. The results showed that croplands recorded the highest gain (17%) throughout the period 1984–2017, while forest recorded 3%. The fastest annual area of change occurred during the period 1984–1994. The salinity model showed a high potential for mapping saline areas (R2 = 0.73 and RMSE = 0.68). Regarding salinity change, the slightly saline areas (2 < EC < 4 dS/m) increased by 42% whereas highly saline (EC > 8 dS/m) and moderately saline (4 < EC < 8 dS/m) areas decreased by 23% and 26%, respectively, in 2017. Additionally, the increasing salt content is less dominant in vegetated areas compared with non-vegetated areas. Nonetheless, the highly concentrated salty areas can be restored using salt-resistant plants (e.g., Eucalyptus sp., Tamarix sp.). This study gives more insights on land use planning and salinity management for improving farmers’ resilience in coastal regions.


2021 ◽  
Author(s):  
Jahanshir Mohammadzadeh-Habili ◽  
Davar Khalili ◽  
Shahrokh Zand-Parsa ◽  
Abdoreza Sabouki ◽  
Ali Dindarlou ◽  
...  

Abstract The Shapour river with catchment area of 4254 km2 is a major river system in southern Iran. While the upstream river flow (the upper Shapour river) is fresh, it becomes extremely salinized at the downstream confluence of Shekastian salty tributary and the entering nearby Boushigan brine spring. The river then passes through the Khesht plain and finally discharges into the Raeisali-Delvari storage dam, which went into operation in 2009. Over the 2006–2019 period, reduced precipitation and over-utilization of freshwater resources resulted in ~ 72% streamflow reduction in the Shapour river. Consequently, the ratios of unused salty/brine water of Shekastian tributary and Boushigan spring to fresh-outflow of the upper Shapour river increased by ~ 3 times and river salinity fluctuation domain at the Khesht plain inlet dramatically increased from 2.1-4.0 dS m− 1 to 3.7–26.0 dS m− 1. It also resulted in disappearance of most river aquatic species and caused major economic damages in the middle Shapour river. On the seasonal time-scale, consecutive processes of salt accumulation during irrigation season of the Khesht plain date orchards and then salt drainage during rainy season have adjusted salinity fluctuation domain from 3.7–26.0 dS m− 1 at the plain inlet to 5.2–8.9 dS m− 1 at the plain outlet. In the lower Shapour river, storage/mixing of fresh/salty inflow waters in the Raeisali-Delvari reservoir has adjusted strong salinity fluctuation domain from 0.9–10.7 dS m− 1 at the reservoir inlet to 3.6–5.5 dS m− 1 at the reservoir outlet. Success of the Raeisali-Delvari reservoir for salinity adjustment is due to its suitable location on the Shapour river, by being situated on downstream of all of the main river tributaries with natural saline/fresh sources of water. Therefore, construction of storage dam on proper site in conjunction with controlled freshwater utilization are viewed as effective measures for salinity management of subjected rivers to natural salinity sources.


Sign in / Sign up

Export Citation Format

Share Document