Pasture establishment on a granite soil on the northern tablelands of New South Wales

1965 ◽  
Vol 5 (16) ◽  
pp. 23 ◽  
Author(s):  
BR Watkin ◽  
PJ Vickery

Factors affecting the establishment and yields of legumes (Trifolium repens L., Trifolium subterraneum L., Meticago sativa L.) on unimproved pasture were studied on a granite soil in New England. Treatments included methods and times of sowing, pre-sowing grazing managements, and fertilizer applications. Sod seeding and discing increased the establishment of clover as did late sowing when the seed was broadcast. Pre-sowing grazing managements had no significant effects. Nitrogen application improved clover establishment. The percentage establishment for subterranean clover was consistently higher than that for white clover, but this was not related to subsequent yield. Sod seeding resulted in increased clover yields. Interactions between yields and pre-sowing grazing managements occurred with species ; light grazing before sowing resulted in maximum white clover yield whereas heavy grazing resulted in maximum subterranean clover and lucerne yields. Significant responses in the yield of white clover were obtained from phosphorus and potassium applications with a significant interaction (P x K). In the second year there were responses to phosphorus and sulphur, largely with repeat applications. The response to potassium declined in the second year. There was a significant increase in clover growth early in the second year from the application of lime and this interacted with potassium.


1955 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
KJ Baird

Most of the cultures isolated from the New England Region of New South Wales were able to form effective associations with white clover. Associations with red, crimson, and subterranean clovers were of doubtful effectiveness, or definitely ineffective. Isolates from plants growing in the drier ayeas were the most effective symbionts with crimson and subterranean clovers, but those from plants in the wetter areas proved best with red and white clovers. This locality effect seemed to be related to the field host from which the isolate was obtained. Those from clustered and subterranean clover were more effective on crimson and subterranean clovers than were those from white clover. On the other hand white clover isolates were the most effective symbionts for white and red clovers. There was a similarity in the effectiveness of isolates of red and white, subterranean and crimson clovers. There was a significant negative correlation with all other pairs. An unusually large number of cultures was inconsistent in nodulation (29 per cent.) or failed to nodulate any of the four clover hosts (6 per cent.). There were initially only about 5 clover rhizobia per gram in the two soils examined but no difficulty was experienced in obtaining growth of bacteria in sterilized soil or successful inoculation of seed of subterranean clover sown in unsterilized soil in pots. A pure culture of each of the five strains was capable of forming nodules, but strains 297 and 298 were responsible for most of the nodules produced from a mixed inoculum. While the relative success of the strains in producing nodules appeared to be independent of their rate of multiplication in sterilized soil, it was affected to some extent by the type of soil.



2000 ◽  
Vol 40 (6) ◽  
pp. 813 ◽  
Author(s):  
G. M. Lodge

Two experiments were conducted on plots sown in autumn 1992, at Tamworth in northern New South Wales. The first compared the establishment of 3 perennial grasses when sown as monocultures or with competitors in either broadcast-sown swards or alternate row-sown plots. Sowing rate and species of competitor were also examined as factors affecting perennial grass establishment. Perennial grasses were Austrodanthonia richardsonii (synonym Danthonia richardsonii) cv. Taranna, A. bipartita (synonym D. linkii) cv. Bunderra, and Phalaris aquatica cv. Sirosa. Competitors were Trifolium subterraneum var. brachycalycinum cv. Clare, T. repens cv. Haifa, and Lolium rigidum cv. Wimmera. In spring 1992, competitors were removed from 144 of the 288 plots to prevent them from seeding. A second experiment compared the longer-term (1993–96) dry matter yield and persistence of these perennial grasses under continuous grazing in plots were the competitor was present in year 1 (1992) or in all years (1992–96). In spring 1992, mean dry matter yield of perennial grass was higher (P<0.001) in row-sown plots then those sown by broadcasting. Mean dry matter yield of perennial grass was lowest at low sowing rate, but not significantly different at medium and high sowing rates (about 350 kg DM/ha). Compared with the monocultures, the presence of a competitor reduced mean perennial grass dry matter yields by 48, 69 and 85%, respectively for white clover, subterranean clover and annual ryegrass. Perennial grass plant numbers were highest (P<0.001) in the medium and high sowing rates of the monocultures and in white clover competitor plots and lowest (P<0.001) in all broadcast-sown plots, where annual ryegrass was the competitor. By spring 1996, white clover and annual ryegrass had declined to a low level in the pasture in all plots and the only major competitor was subterranean clover (1200 kg DM/ha, 40% plant frequency). Mean dry matter yields were highest (P<0.001) for Sirosa in 1993, but with dry conditions in 1994 and continuous grazing they were highest for Bunderra in all other years. The implications of these data for devising sowing strategies to maximise the establishment of perennial grasses and their long-term persistence in this environment are discussed.



2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.



1955 ◽  
Vol 6 (2) ◽  
pp. 211 ◽  
Author(s):  
Y Aitken

The value of the annual legume Trifolium subterraneum L. (subterranean clover) in Australian agriculture warrants more precise knowledge of factors affecting flowering and prolific seeding. The effect of temperature and photoperiod on flower initiation in early and later flowering varieties has been investigated in an effort to determine the geographical limits of the use of subterranean clover in Australia. At any time of sowing, the length of the growing season of a variety depends greatly on the variety's response to the temperature level and to the photoperiod of the first few weeks after germination. In all varieties of subterranean clover so far examined flower initiation is accelerated by a period of low temperature. In the later varieties, flower initiation is prevented by an insufficient period of low temperature. The length of the necessary cold period is shortened under longer photoperiod. Early varieties are early flowering because they do not require so long a cold period or so low a temperature as late varieties.



1955 ◽  
Vol 6 (4) ◽  
pp. 553 ◽  
Author(s):  
RC Rossiter ◽  
PG Ozanne

A 2-year field experiment is described, in which an annual-type pasture was grown on a soil of lateritic origin with various initial rates of rock phosphate and superphosphate. The soil was acutely deficient in plant-available phosphorus at the outset. Application of superphosphate led to the expected increases in total pasture production, but rock phosphate also gave substantial yield increases, even during the first season. Differential species effects were noted; subterranean clover (Trifolium subterraneum L.) and cape-weed (Cryptostemma calendula Druce) responded about equally to superphosphate, but the clover responded to rock phosphate to a greater extent than did cape-weed. Both relative efficiency for total plant growth and percentage utilization of applied phosphorus were much higher with the soluble phosphatic fertilizer than with rock phosphate, especially in the first year. However, phosphorus recovery from rock phosphate was as high in the second year as in the first, whereas there was a marked decrease in the second year from superphosphate.



1991 ◽  
Vol 42 (5) ◽  
pp. 893 ◽  
Author(s):  
DC Edmeades ◽  
FPC Blamey ◽  
CJ Asher ◽  
DG Edwards

Ten temperate pasture legumes inoculated with appropriate rhizobia were grown for 31 days in flowing solution culture. Solution ionic strength was approximately 2700 8M and contained inorganic nitrogen (150 , 8M NO3-) only at the commencement of the experiment. Solution pH was maintained at 4.5, 5.0, 5.5 and 6.0. Also, five aluminium (Al) treatments were imposed, with nominal Al concentrations of 0, 3, 6, 12 and 24 8M (2.5, 7.1, 8.3, 11.2 and 24.7 8M Al measured) at pH 4.5. Solution pH <6 . 0 markedly reduced total dry mass (TDM) in all cultivars of white clover (Trifolium repens) cvv. 'Grasslands Pitau, Huia, G18 and Tahora' and red clover (Trifolium pratense) cvv. 'Grassland Turoa and Pawera', and to a lesser extent in the two subterranean clover (Trifolium subterraneum) cvv. 'Tallarook and Woogenellup'. In contrast, solution pH had no effect on the growth of Lotus corniculatus cv. Maitland, while Lotus pedunculatus cv. Maku grew best at pH 4.5. Lotus pedunculatus cv. Maku grew best in solution where the sum of the activities of the monomeric Al species {Alm} was maintained at 5.9 8M. The growth of all other species was decreased with Al in solution, a 50% reduction in TDM being associated with c. 6 8M {Alm] for white clover and subterranean clover, and c. 3 8M in red clover and Lotus corniculatus cv. Maitland.



2001 ◽  
Vol 41 (2) ◽  
pp. 187 ◽  
Author(s):  
R. Aldaoud ◽  
W. Guppy ◽  
L. Callinan ◽  
S. F. Flett ◽  
K. A. Wratten ◽  
...  

In 1995–96, a survey of soil samples from subterranean clover (Trifolium subterraneum L.) paddocks was conducted across Victoria, South Australia, New South Wales and Western Australia, to determine the distribution and the prevalence of races of Phytophthora clandestina (as determined by the development of root rot on differential cultivars), and the association of its occurrence with paddock variables. In all states, there was a weak but significant association between P. clandestina detected in soil samples and subsequent root rot susceptibility of differential cultivars grown in these soil samples. Phytophthora clandestina was found in 38% of the sampled sites, with a significantly lower prevalence in South Australia (27%). There were significant positive associations between P. clandestina detection and increased soil salinity (Western Australia), early growth stages of subterranean clover (Victoria), mature subterranean clover (South Australia), recently sown subterranean clover (South Australia), paddocks with higher subterranean clover content (Victoria), where herbicides were not applied (South Australia), irrigation (New South Wales and Victoria), cattle grazing (South Australia and Victoria), early sampling dates (Victoria and New South Wales), sampling shortly after the autumn break or first irrigation (Victoria), shorter soil storage time (Victoria) and farmer’s perception of root rot being present (Victoria and New South Wales). Only 29% of P. clandestina isolates could be classified under the 5 known races. Some of the unknown races were virulent on cv. Seaton Park LF (most resistant) and others were avirulent on cv. Woogenellup (most susceptible). Race 1 was significantly less prevalent in South Australia than Victoria and race 0 was significantly less prevalent in New South Wales than in South Australia and Western Australia. This study revealed extremely wide variation in the virulence of P. clandestina. The potential importance of the results on programs to breed for resistance to root rot are discussed. in South Australia.



1968 ◽  
Vol 8 (35) ◽  
pp. 702 ◽  
Author(s):  
DF Smith

Mixed swards of barley grass (Hordeum leporinum) and subterranean clover (Trifolium subterraneum) of two densities were grown at two levels of nitrogen. Growth was started at two different times mid- April and mid-May-and at each time half the plots were subjected to moisture stress. The swards were harvested after nine weeks of growth. The survival of clover plants was reduced by an early start, moisture stress and nitrogen addition : much more so than barley grass. The root : shoot ratios of both species were calculated ; both showed some sensitivity to the time of break and moisture stress, and the grass was also affected by the other two factors. Total sward production and the ratios of clover to grass varied widely Grass daminance was favoured by moisture stress or a late break, and both of these factors tended to override the effect of higher soil nitrogen in determining clover-grass balance. Total sward production more dependent on density than any other factor, especially with the later start. Higher nitrogen was effective in boosting production only if the break was early and there was no moisture stress.



1975 ◽  
Vol 15 (77) ◽  
pp. 795 ◽  
Author(s):  
JA Thompson

A range of temperate annual and perennial legumes, naturalized or commonly sown in the area, was examined at three field sites in low fertility soils derived from granite on the south western slopes of the New England Region, New South Wales. They were compared over a four year period in terms of their persistence, dry matter and nitrogen production and their compatibility with associated temperate perennial grasses, The response of sown grass to nitrogen fertilizer application was also examined in the absence of legume. Ten legumes were examined at one site and six of these at the other two sites. In general, nitrogen yields were ranked similarly to total dry matter yields of all treatments, including grasses in the absence of legume. However, the legumes were ranked differently in terms of productivity of the legume component and productivity of associated grass. At all sites lucerne gave the highest yields of total dry matter and of legume and the lowest yield and persistence of associated grass-comparable to grass growing in the absence of legume or applied nitrogen. Subterranean clover was ranked second or third in total dry matter yield, depending on site, but provided the highest yield of associated grasscomparable to grass receiving high levels of applied nitrogen. Under this legume soil nitrogen levels tended to be highest. Rose clover, sown at one site only, yielded more legume dry matter than subterranean clover but grass yield was comparable to that with lucerne. The results suggest that subterranean clover is the superior legume for successful mixed sowings although inclusion of white clover could be justified. Lucerne appears to be best sown as a pure sward.



1967 ◽  
Vol 7 (24) ◽  
pp. 25 ◽  
Author(s):  
GB Taylor ◽  
RC Rossiter

Seed production and persistence of the Carnamah, Northam A, Dwalganup, and Geraldton strains of subterranean clover (Trifolium subterraneum L.) were examined in undefoliated swards in the wheatbelt of Western Australia. The early flowering characteristic of Carnamah was not always associated with higher seed yields. Only when there was a well-defined, early finish to the growing season, or when flowering was very much earlier in Carnamah (viz., following an early 'break' to the season), did this strain clearly outyield both Northam A and Geraldton. The seed yield of Dwalganup was generally inferior to that of the other strains. Factors affecting regeneration are discussed. Under low rainfall conditions, poorer germination-regulation of Carnamah, compared with Geraldton and Northam A, would be expected to result in poorer persistence unless offset by higher seed yields in the Carnamah strain.



Sign in / Sign up

Export Citation Format

Share Document