Effects of temperature on development and progression in rape of crown canker caused by Leptosphaeria maculans

1975 ◽  
Vol 15 (76) ◽  
pp. 705 ◽  
Author(s):  
MJ Barbetti

Aspects of the development and progression of blackleg crown canker in rape seedlings (Brassica napus and B. campestris), following stem infection by L. maculans ascospores were examined at three temperature regimes; 12/7�C, 18/11�C, and 24/15�C. Crown cankers were produced at all temperatures on seedlings inoculated one week after germination. Temperature regime was shown to be a major factor determining the time of first appearance of crown cankers after inoculation; 12/7�C being the least favourable for crown canker development of the three regimes used. Temperature regime had a significant effect upon the time taken for infected plants to die, the 12/7�C regime being the optimum for slowest plant death, Infected B. napus plants died at a faster rate than B. campestris. Temperature regime was also shown to influence the nature, or type, of crown canker that developed.

1994 ◽  
Vol 72 (6) ◽  
pp. 1134-1140 ◽  
Author(s):  
John A. Holmes ◽  
John H. Youson

Larval sea lampreys of immediate premetamorphic size (at least 120 mm and 3.0 g) were subjected to ambient or constant 21 °C temperature regimes for 9 months to investigate the influence of temperature and a fall condition factor (CF) of 1.50 or greater on the incidence of metamorphosis the following summer. The incidence of metamorphosis was 53% in the ambient temperature regime (29/55) and only 2% (1/55) in the constant temperature regime. About 64% (7/11) of the presumptively metamorphic larvae in the ambient temperature regime entered metamorphosis compared with 10% (1/10) in the constant temperature regime. Our predictions of metamorphosis based on CF were consistent with the observation that seven presumptively metamorphic larvae (CF ≥ 1.50) metamorphosed in the ambient temperature regime and that there was no metamorphosis among presumptively nonmetamorphic larvae in the constant temperature regime. Significantly more presumptively nonmetamorphic larvae in the ambient regime entered metamorphosis and fewer presumptively metamorphic larvae (CF < 1.50) metamorphosed in the constant temperature regime than expected. We attribute this response to the effects of temperature on metabolic processes. Larval sea lampreys of the appropriate size (≥ 120 mm and ≥ 3.0 g) with a CF of 1.50 or greater in the fall will usually enter metamorphosis the following July, but the accuracy of these predictions may be improved in some populations by using an empirically determined CF criterion that reflects seasonal or population differences in mass–length relationships.


1973 ◽  
Vol 21 (2) ◽  
pp. 102-109 ◽  
Author(s):  
K. Verkerk ◽  
C.J.T. Spitters

In the first of 2 experiments lettuces were grown either under natural light conditions in the glasshouse in December and January or under 8- or 16-h daylengths, with several temperature regimes, and the leaf area per plant was measured after 22 and 45 days. Under natural light growth during the first 22 days was slight but subsequent growth was greatest with a light/dark temperature regime of 13/13 deg C, followed by one of 17/17 deg . With an 8-h day growth with diurnally changing temperatures was much greater than with constant ones, the best results being obtained with a regime of 25/17 deg . With a 16-h day the effect of diurnal temperature was much less marked and a constant high temperature regime of 21/21 deg gave better results than one of 25/17 deg . In the second experiment the plants were grown for 4 weeks under the same temperature regimes with 8- or 16-h daylengths, but the light intensity was varied by placing the plants at 2 vertical distances from the overhead lamps and all plants receiving a 16-h daylength were shaded by cheesecloth. The best results were obtained with a 16-h daylength with the plants placed close to the lamps; the effects of temperature were not so marked, but regimes of 25/17, 21/13 or 17/17 deg were the most satisfactory. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2020 ◽  
Vol 22 (1) ◽  
pp. 313
Author(s):  
Aldrin Y. Cantila ◽  
Nur Shuhadah Mohd Saad ◽  
Junrey C. Amas ◽  
David Edwards ◽  
Jacqueline Batley

Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1367
Author(s):  
Valentina Obradović ◽  
Jurislav Babić ◽  
Verica Dragović-Uzelac ◽  
Antun Jozinović ◽  
Đurđica Ačkar ◽  
...  

The objective of this research was to investigate the potentiality of carrot powder (CP) utilization at levels 4, 6, or 8% as ingredient of corn snacks and evaluation of the extrusion influence on functionally important ingredients such as carotenoids (color), polyphenols, fiber, fat, and antioxidant activity. The influence of ascorbic acid (AA) as an external source at levels 0.5 and 1% on this particular extrusion was also investigated. A single-screw extruder at two temperature regimes (135/170/170 °C (E1) and 100/150/150 °C (E2)) carried out extrusion. The E1 temperature regime acted favorably on total polyphenol content and crude fiber, but fat preferred the E2 regime. Extrusion, especially the E1 temperature regime, increased the extractability of carotenoids. Ascorbic acid degraded during extrusion, but it still provided protection to carotenoids and color attributes of extrudates. Snacks with increased nutritional and functional value due to carrot powder addition were successfully produced, which is a starting point for production of a new type of extruded snacks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noémie Deldicq ◽  
Dewi Langlet ◽  
Camille Delaeter ◽  
Grégory Beaugrand ◽  
Laurent Seuront ◽  
...  

AbstractHeatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm3 indiv−1 day−1 (usual temperature) to 0 mm3 indiv−1 day−1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document