scholarly journals Australian carbon tetrachloride emissions in a global context

2014 ◽  
Vol 11 (1) ◽  
pp. 77 ◽  
Author(s):  
Paul J. Fraser ◽  
Bronwyn L. Dunse ◽  
Alistair J. Manning ◽  
Sean Walsh ◽  
R. Hsiang J. Wang ◽  
...  

Environmental context Carbon tetrachloride in the background atmosphere is a significant environmental concern, responsible for ~10% of observed stratospheric ozone depletion. Atmospheric concentrations of CCl4 are higher than expected from currently identified emission sources: largely residual emissions from production, transport and use. Additional sources are required to balance the expected atmospheric destruction of CCl4 and may contribute to a slower-than-expected recovery of the Antarctic ozone ‘hole’. Abstract Global (1978–2012) and Australian (1996–2011) carbon tetrachloride emissions are estimated from atmospheric observations of CCl4 using data from the Advanced Global Atmospheric Gases Experiment (AGAGE) global network, in particular from Cape Grim, Tasmania. Global and Australian emissions are in decline in response to Montreal Protocol restrictions on CCl4 production and consumption for dispersive uses in the developed and developing world. However, atmospheric data-derived emissions are significantly larger than ‘bottom-up’ estimates from direct and indirect CCl4 production, CCl4 transportation and use. Australian CCl4 emissions are not a result of these sources, and the identification of the origin of Australian emissions may provide a clue to the origin of some of these ‘missing’ global sources.

2016 ◽  
Author(s):  
Francesco Graziosi ◽  
Jgor Arduini ◽  
Paolo Bonasoni ◽  
Francesco Furlani ◽  
Umberto Giostra ◽  
...  

Abstract. Carbon tetrachloride (CCl4) is a long-lived radiatively-active compound able to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer, the last two decades have seen a sharp decrease in its large scale emissive use with a consequent decline of its atmospheric mole fractions. However, the Montreal Protocol restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived by reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006–2014 were 2.3 (± 0.8) Gg yr−1, with an average decreasing trend of 7.3 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of 25 %. The inversion was also able to allow the localisation of emission "hot-spots" in the domain, with major source areas in Southern France, Central England (UK) and Benelux (Belgium, The Netherlands, Luxembourg), where most of industrial scale production of basic organic chemicals are located. According to our results, European emissions correspond to 4.0 % of global emissions for 2006–2012. Together with other regional studies, our results allow a better constraint of the global budget of carbon tetrachloride and a better quantification of the gap between top-down and bottom-up estimates.


2016 ◽  
Vol 16 (20) ◽  
pp. 12849-12859 ◽  
Author(s):  
Francesco Graziosi ◽  
Jgor Arduini ◽  
Paolo Bonasoni ◽  
Francesco Furlani ◽  
Umberto Giostra ◽  
...  

Abstract. Carbon tetrachloride (CCl4) is a long-lived radiatively active compound with the ability to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer (MP), the last two decades have seen a sharp decrease in its large-scale emissive use with a consequent decline in its atmospheric mole fractions. However, the MP restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived from reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006–2014 were 2.2 (± 0.8) Gg yr−1, with an average decreasing trend of 6.9 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of approximately 26 %. The inversion was also able to allow the localisation of emission "hot spots" in the domain, with major source areas in southern France, central England (UK) and Benelux (Belgium, the Netherlands, Luxembourg), where most industrial-scale production of basic organic chemicals is located. According to our results, European emissions correspond, on average, to 4.0 % of global emissions for 2006–2012. Together with other regional studies, our results allow a better constraint of the global budget of carbon tetrachloride and a better quantification of the gap between top-down and bottom-up estimates.


2013 ◽  
Vol 13 (5) ◽  
pp. 2691-2702 ◽  
Author(s):  
M. Rigby ◽  
R. G. Prinn ◽  
S. O'Doherty ◽  
S. A. Montzka ◽  
A. McCulloch ◽  
...  

Abstract. Since the Montreal Protocol on Substances that Deplete the Ozone Layer and its amendments came into effect, growth rates of the major ozone depleting substances (ODS), particularly CFC-11, -12 and -113 and CH3CCl3, have declined markedly, paving the way for global stratospheric ozone recovery. Emissions have now fallen to relatively low levels, therefore the rate at which this recovery occurs will depend largely on the atmospheric lifetime of these compounds. The first ODS measurements began in the early 1970s along with the first lifetime estimates calculated by considering their atmospheric trends. We now have global mole fraction records spanning multiple decades, prompting this lifetime re-evaluation. Using surface measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the National Oceanic and Atmospheric Administration Global Monitoring Division (NOAA GMD) from 1978 to 2011, we estimated the lifetime of CFC-11, CFC-12, CFC-113 and CH3CCl3 using a multi-species inverse method. A steady-state lifetime of 45 yr for CFC-11, currently recommended in the most recent World Meteorological Organisation (WMO) Scientific Assessments of Ozone Depletion, lies towards the lower uncertainty bound of our estimates, which are 544861 yr (1-sigma uncertainty) when AGAGE data were used and 524561 yr when the NOAA network data were used. Our derived lifetime for CFC-113 is significantly higher than the WMO estimates of 85 yr, being 10999121 (AGAGE) and 10997124 (NOAA). New estimates of the steady-state lifetimes of CFC-12 and CH3CCl3 are consistent with the current WMO recommendations, being 11195132 and 11295136 yr (CFC-12, AGAGE and NOAA respectively) and 5.044.925.20 and 5.044.875.23 yr (CH3CCl3, AGAGE and NOAA respectively).


2017 ◽  
Vol 17 (16) ◽  
pp. 10143-10162 ◽  
Author(s):  
Massimo Valeri ◽  
Flavio Barbara ◽  
Chris Boone ◽  
Simone Ceccherini ◽  
Marco Gai ◽  
...  

Abstract. Atmospheric emissions of carbon tetrachloride (CCl4) are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule has been the subject of recent increased interest as a consequence of the so-called mystery of CCl4, the discrepancy between atmospheric observations and reported production and consumption. Surface measurements of CCl4 atmospheric concentrations have declined at a rate almost 3 times lower than its lifetime-limited rate, suggesting persistent atmospheric emissions despite the ban. In this paper, we study CCl4 vertical and zonal distributions in the upper troposphere and lower stratosphere (including the photolytic loss region, 70–20 hPa), its trend, and its stratospheric lifetime using measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which operated onboard the ENVISAT satellite from 2002 to 2012. Specifically, we use the MIPAS data product generated with Version 7 of the Level 2 algorithm operated by the European Space Agency.The CCl4 zonal means show features typical of long-lived species of anthropogenic origin that are destroyed primarily in the stratosphere, with larger quantities in the troposphere and a monotonic decrease with increasing altitude in the stratosphere. MIPAS CCl4 measurements have been compared with independent measurements from other satellite and balloon-borne remote sounders, showing a good agreement between the different datasets.CCl4 trends are calculated as a function of both latitude and altitude. Negative trends of about −10 to −15 pptv decade−1 (−10 to −30 % decade−1) are found at all latitudes in the upper troposphere–lower stratosphere region, apart from a region in the southern midlatitudes between 50 and 10 hPa where the trend is positive with values around 5–10 pptv decade−1 (15–20 % decade−1). At the lowest altitudes sounded by MIPAS, we find trends consistent with those determined on the basis of long-term ground-based measurements (−10 to −13 pptv decade−1). For higher altitudes, the trend shows a pronounced asymmetry between the Northern and Southern hemispheres, and the magnitude of the decline rate increases with altitude. We use a simplified model assuming tracer–tracer linear correlations to determine CCl4 lifetime in the lower stratosphere. The calculation provides a global average lifetime of 47 (39–61) years, considering CFC-11 as the reference tracer. This value is consistent with the most recent literature result of 44 (36–58) years.


2021 ◽  
Vol 118 (5) ◽  
pp. e2010914118
Author(s):  
Martin K. Vollmer ◽  
Jens Mühle ◽  
Stephan Henne ◽  
Dickon Young ◽  
Matthew Rigby ◽  
...  

Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b (CH2ClCClF2), which is newly discovered in the atmosphere, and updated results for HCFC-133a (CH2ClCF3) and HCFC-31 (CH2ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y−1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016–2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y−1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y−1. Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.


2020 ◽  
Vol 17 (8) ◽  
pp. 525
Author(s):  
Paul J. Fraser ◽  
Bronwyn L. Dunse ◽  
Paul B. Krummel ◽  
L. Paul Steele ◽  
Nada Derek ◽  
...  

Environmental contextChlorofluorocarbons (CFCs) are potent greenhouse and stratospheric ozone depleting trace gases. Their atmospheric concentrations are in decline, thanks to global production and consumption controls imposed by the Montreal Protocol. In recent years, the rates of decline of CFC atmospheric concentrations, especially for CFC-11 (CCl3F), are not as large as anticipated under the Protocol, resulting in renewed efforts to estimate CFC consumption and/or emissions to possibly identify new or poorly quantified sources. AbstractAustralian emissions of chlorofluorocarbons (CFCs) have been estimated from atmospheric CFC observations by both inverse modelling and interspecies correlation techniques, and from CFC production, import and consumption data compiled by industry and government. Australian and global CFC emissions show similar temporal behaviour, with emissions peaking in the late-1980s and then declining by ~10% per year through to the present. Australian CFC emissions since 1978 account for less than 1% of global emissions and therefore make a correspondingly small contribution to stratospheric ozone depletion. The current CFC emissions in Australia are likely from ‘banks’ of closed-cell foams, and refrigeration–air conditioning equipment now more than 20 years old. There is no evidence of renewed consumption or emissions of CFCs in Australia. The reduction in CFC emissions has made a significant contribution to reducing Australian greenhouse gas emissions.


2010 ◽  
Vol 10 (21) ◽  
pp. 10421-10434 ◽  
Author(s):  
X. Xiao ◽  
R. G. Prinn ◽  
P. J. Fraser ◽  
R. F. Weiss ◽  
P. G. Simmonds ◽  
...  

Abstract. Carbon tetrachloride (CCl4) has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CCl4 measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl4 for the period of 1996–2004. The Model of Atmospheric Transport and Chemistry (MATCH), driven by offline National Center for Environmental Prediction (NCEP) reanalysis meteorological fields, is used to simulate CCl4 mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the Earth System Research Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA) and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl4 mole fractions were declining in this period because the CCl4 oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.


2010 ◽  
Vol 10 (5) ◽  
pp. 12225-12260 ◽  
Author(s):  
X. Xiao ◽  
R. G. Prinn ◽  
P. J. Fraser ◽  
R. F. Weiss ◽  
P. G. Simmonds ◽  
...  

Abstract. Carbon tetrachloride (CCl4) has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CC14 measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl4 for the period of 1996–2004. The Model of Atmospheric Transport and Chemistry (MATCH), driven by offline National Center for Environmental Prediction (NCEP) reanalysis meteorological fields, is used to simulate CCl4 mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and NOAA Earth System Research Laboratory (ESRL) and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl4 mole fractions were declining in this period because the CCl4 oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.


2012 ◽  
Vol 12 (9) ◽  
pp. 24469-24499 ◽  
Author(s):  
M. Rigby ◽  
R. G. Prinn ◽  
S. O'Doherty ◽  
S. A. Montzka ◽  
A. McCulloch ◽  
...  

Abstract. Since the Montreal Protocol on substances that deplete the ozone layer and its amendments came into effect, growth rates of the major ozone depleting substances (ODS), particularly CFC-11, -12 and -113 and CH3CCl3, have declined markedly, paving the way for global stratospheric ozone recovery. Emissions have now fallen to relatively low levels, therefore the rate at which this recovery occurs will depend largely on the atmospheric lifetime of these compounds. The first ODS measurements began in the early 1970s along with the first lifetime estimates calculated by considering their atmospheric trends. We now have global mole fraction records spanning multiple decades, prompting this lifetime re-evaluation. Using surface measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the National Oceanic and Atmospheric Administration Global Monitoring Division (NOAA GMD) from 1978 to 2011, we estimated the lifetime of CFC-11, CFC-12, CFC-113 and CH3CCl3 using a multi-species inverse method. The CFC-11 lifetime of 45 yr, currently recommended in the World Meteorological Organisation (WMO) Scientific Assessment of Ozone Depletion, lies at the lower uncertainty bound of our estimates which are 524066 yr (1-sigma uncertainty) when AGAGE data were used, and 504066 yr when the NOAA network data were used. Our derived lifetime for CFC-113 is higher than the WMO estimates of 85 yr (10488123 using AGAGE, 10387122 using NOAA). Our estimates of the lifetime of CFC-12 and CH3CCl3 agree well with other recent estimates being 10885137 and 10484135 yr (CFC-12, AGAGE and NOAA, respectively) and 5.24.85.6 and 5.24.85.7 yr (CH3CCl3, AGAGE and NOAA, respectively).


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrew P. Rees ◽  
Ian J. Brown ◽  
Amal Jayakumar ◽  
Gennadi Lessin ◽  
Paul J. Somerfield ◽  
...  

AbstractNitrous oxide (N2O) is important to the global radiative budget of the atmosphere and contributes to the depletion of stratospheric ozone. Globally the ocean represents a large net flux of N2O to the atmosphere but the direction of this flux varies regionally. Our understanding of N2O production and consumption processes in the ocean remains incomplete. Traditional understanding tells us that anaerobic denitrification, the reduction of NO3− to N2 with N2O as an intermediate step, is the sole biological means of reducing N2O, a process known to occur in anoxic environments only. Here we present experimental evidence of N2O removal under fully oxygenated conditions, coupled with observations of bacterial communities with novel, atypical gene sequences for N2O reduction. The focus of this work was on the high latitude Atlantic Ocean where we show bacterial consumption sufficient to account for oceanic N2O depletion and the occurrence of regional sinks for atmospheric N2O.


Sign in / Sign up

Export Citation Format

Share Document