From controlled environments to field simulations: leaf area dynamics and photosynthesis of kiwifruit vines (Actinidia deliciosa)

2004 ◽  
Vol 31 (2) ◽  
pp. 169 ◽  
Author(s):  
Dennis H. Greer ◽  
Alla N. Seleznyova ◽  
Steven R. Green

Canopy leaf area development and daily rates of carbon acquisition of kiwifruit [Actinidia deliciosa (A.�Chev.) C.F. Liang et A.R. Ferguson] vines growing in orchard conditions were modelled from mathematically-based physiological descriptions of leaf area expansion and photosynthesis of individual leaves Model drivers were temperatures and photon flux densities (PFD) measured in the orchard at 30-min intervals over the growing season. A modelling framework of shoot leaf area expansion, developed from controlled environment studies, was extended to whole vines by including canopy architectural components, such as shoot numbers, percentage budbreak and proportions of shoots in different length classes. Daily photosynthesis was modelled from rectangular hyperbolic functions determined for both sun and shade leaves and simulated from calculated light interception. Canopy leaf area, photosynthesis and PFDs within the canopy, obtained from measurements from vines grown in the orchard, were used to test the model. Close agreement occurred between the simulated and measured canopy leaf area development, and also between simulated and measured rates of photosynthesis. Total carbon acquisition over the growing season, estimated at 11 kg vine–1, compared closely with measured increments in vine biomass over the growing season. Results thus confirm the physiologically based model to be readily scalable to whole vines growing in orchard conditions.

1994 ◽  
Vol 74 (1) ◽  
pp. 37-42 ◽  
Author(s):  
D. W. Stewart ◽  
L M. Dwyer

Estimation of leaf area is a major component of plant growth models. In this study, a model was developed to calculate field-grown maize leaf area expansion and senescence on an individual leaf basis. The model began with an equation, based on cumulative growing degree-days from emergence, to initiate leaf area development. The model required daily values of maximum and minimum air temperature, solar radiation and precipitation, had essentially a daily time step with day and night modes, and could be run on commonly accessible computers (micros to mainframes). The objective of the development of the model was to assist plant breeders in optimizing leaf number and shape for adaptation to specific environments. Key words: Leaf area and number, temperature, phenological development


1985 ◽  
Vol 104 (3) ◽  
pp. 625-630 ◽  
Author(s):  
R. K. Chopra ◽  
K. R. Koundal ◽  
Madhu Kansal

SummaryGrowth rates were compared of pigeonpea (Cajanus cajan), moth bean (Vigna aconitifolia), mung bean (Vigna radiata) and sorghum seedlings aged 2–5 weeks. The seedling growth rates were analysed in relation to leaf area development, net photosynthetic rate, nitrogen accumulation, nitrate reductase activity, and soluble protein content. Growth rates were highest in sorghum and lowest in C. cajan. Leaf area development was very fast in sorghum and very slow in C. cajan. Net photosynthetic rate of sorghum leaves was double that observed for the legume leaves. No significant difference was observed in nitrate reductase activity, nitrogen percentage or soluble protein content between sorghum and the legumes. In sorghum, early investment of assimilates into leaf development ensured a higher assimilation of carbon and nitrogen per plant. In the legumes, slow development of leaf area coupled with low photosynthetic rates probably resulted in slow growth of the seedlings. In the legume seedlings, vigour was related to the rates of leaf area expansion. Leaf area expansion rates were not related to the nitrogen status of the leaf in the species examined.


2002 ◽  
Vol 127 (2) ◽  
pp. 290-296 ◽  
Author(s):  
Keith A. Funnell ◽  
Errol W. Hewett ◽  
Julie A. Plummer ◽  
Ian J. Warrington

Photosynthetic activity of individual leaves of Zantedeschia Spreng. `Best Gold' aff. Z. pentlandii (Wats.) Wittm. [syn. Richardia pentlandii Wats.] (`Best Gold'), were quantified with leaf expansion and diurnally, under a range of temperature and photosynthetic photon flux (PPF) regimes. Predictive models incorporating PPF, day temperature, and percentage leaf area expansion accounted for 78% and 81% of variation in net photosynthetic rate (Pn) before, and postattainment of, 75% maximum leaf area, respectively. Minimal changes in Pn occurred during the photoperiod when environmental conditions were stable. Maximum Pn (10.9μmol·m-2·s-1 or 13.3 μmol·g-1·s-1) occurred for plants grown under high PPF (694 μmol·m-2·s-1) and day temperature (28 °C). Acclimation of Pn was less than complete, with any gain through a greater light-saturated photosynthetic rate (Pmax) at high PPF also resulting in a reduction in quantum yield. Similarly, any gain in acclimation through increased quantum yield under low PPF occurred concurrently with reduced Pmax. It was concluded that Zantedeschia `Best Gold' is a shade tolerant selection, adapted to optimize photosynthetic rate under the climate of its natural habitat, by not having obligate adaptation to sun or shade habitats.


1995 ◽  
Vol 46 (1) ◽  
pp. 99 ◽  
Author(s):  
F Giunta ◽  
R Motzo ◽  
M Deidda

A field experiment was carried out in Sardinia (Italy) on durum wheat to analyse the effects of different moisture treatments, irrigated (I), rainfed (R) and stressed (S), on leaf area index (LAI), radiation intercepted (Q) and water use (WU), efficiency of conversion of radiation and water into dry matter (RUE and WUE), nitrogen uptake and carbon and nitrogen partitioning in the above-ground part of the plant. In the period between beginning of stem elongation and heading, drought affected the maximum LA1 in the most stressed treatment (4.7 in S v. about 6.9 in R and I), but not Q and WU. RUE was also lowered by drought in this period (0.68 in S v. about 0.95 g MJ-1 in R and I) as a reduced biomass was recorded in S at heading (528gm-2 in S v. 777 g m-2 on average in R and I). In contrast with the previous period, the reduction in LA1 between heading and maximum ear weight (MEW) determined a significant reduction in Q and WU, WUE and RUE, resulting, ultimately, in notable differences in the total biomass produced until MEW (1203, 930 and 546 gm-2 in I, R and S respectively). The amount of stem reserves relocated to the grain decreased as the level of stress increased, going from 223gm-2 in I to 9gm-2 in S and was accumulated almost entirely (from 76% of the total in I to 100% in S), in the post-heading period. Nitrogen percentage was not affected by the treatments applied apart from the higher values in stem and flag leaf in S later in the growing season due to an inhibition of nitrogen translocation in S. The total nitrogen uptake was lower in S (12.3gm-2) than in I (16.6gm-2) only as a consequence of the different dry matter accumulation patterns. The importance of WUE in this type of Mediterranean environment is discussed, with particular concern to the key role of modulation of leaf area development through the growing season.


1992 ◽  
Vol 19 (3) ◽  
pp. 309 ◽  
Author(s):  
WJS Downton ◽  
WJR Grant

Canopy development, photosynthetic performance and yield characteristics of Riesling grapevines managed by either conventional spur pruning or minimal pruning were compared over a growing season. Leaf area development 4-5 weeks after budburst was 4-5-fold greater on the minimal pruned vines due to the 6-7-fold greater number of buds that burst to produce shoots. By time of flowering (8 weeks after budburst) there was less than a 2-fold difference between the pruning treatments in leaf area per vine. At time of harvest the leaf area of spur pruned vines on a Y-shaped trellis exceeded that of minimal pruned vines. Average photosynthetic rates of leaves on shoots on minimal pruned vines were 40% higher than on spur pruned vines at 4 weeks after budburst, but average rates were similar the following week and thereafter. Calculated instantaneous photosynthetic rates for entire vines were 3-6-fold higher for the minimal pruned vines at 4-5 weeks after budburst. However, by time of flowering, vines in both treatments had similar photosynthetic rates. At harvest, spur pruned vines showed somewhat greater instantaneous carbon gain than minimal pruned vines. Carbon gain per vine per day estimated from hourly measurements of irradiance over the canopy showed a similar trend to the instantaneous rates. Leaf conductances did not differ with pruning treatment. Calculated instantaneous water loss per vine was 2-5-fold higher for minimal pruned vines 4-5 weeks after budburst, but from flowering onwards spur pruned vines were likely to use more water than minimal pruned vines. Minimal pruned vines yielded twice the quantity of fruit of spur pruned vines, but only one-quarter the dry weight of new canes. Total carbon invested in fruit, new canes and leaves, however, was similar in both pruning treatments, accounting for 60-70% of the estimated carbon gain by the vines.


2003 ◽  
Vol 30 (9) ◽  
pp. 927 ◽  
Author(s):  
Dennis H. Greer ◽  
Chiara Cirillo ◽  
Cara L. Norling

Fruiting kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson] vines were grown in two controlled temperatures of 28 / 22 and 17 / 12°C (day / night) for 160 and 215 d, to measure shoot and fruit growth and carbon demand, and to examine competition between fruit and the shoot. Leaf area, internode lengths, fruit diameters, photosynthesis and respiration were measured at regular intervals. The net daily carbon balance per shoot was determined from the net carbon acquisition of shoots, and carbon sequestration as shoot biomass. Vines grown at high temperature had 200% more leaf area, similar stem lengths and 100% more biomass than vines grown at low temperature. Leaf area expansion and stem extension were transiently reduced when fruit growth was maximal. Photosynthetic and respiration rates were affected by temperature, leading to net carbon acquisition of 450 g shoot–1 for 28 / 22°C-grown vines and 253 g shoot–1 for 17 / 12°C-grown vines, 54% being used for leaf, stem and fruit growth. Reallocation of carbon occurred from leaves to fruit, and the consequent reduction in leaf area strongly reduced the overall carbon balance compared with vegetative vines at similar temperatures. The data support the conclusion that at low temperatures especially, there is insufficient carbon to meet the full demands of both fruit and shoot growth.


Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 101-105 ◽  
Author(s):  
David T. Patterson ◽  
Elizabeth P. Flint ◽  
Jan L. Beyers

The C4weed johnsongrass [Sorghum halepense(L.) Pers. ♯3SORHA] and the C3crop soybean [Glycine max(L.) Merr. ‘Ransom’] were grown separately and in inter- and intraspecific competition at 350 and 675 ppm CO2in controlled environment chambers with 29/23 C day/night temperatures and 950 μE·m-2· s-1PPFD (photosynthetic photon flux density). In the absence of competition, the higher CO2concentration stimulated dry matter accumulation, leaf area expansion, net assimilation rate, and leaf area duration of soybean more than that of johnsongrass. The plant relative yield (PRY) of soybean in competition with johnsongrass increased, and the PRY of johnsongrass in competition with soybean decreased, as the CO2concentration was increased from 350 to 675 ppm. Thus, the competitiveness of the C3crop with the C4weed increased with increasing CO2concentration. Relative yield totals were not significantly different from 1.0, indicating that the two species were competing for the same resources. With the increases in global atmospheric CO2concentration predicted for the next 50 to 100 yr, the competitiveness of C3crops with C4weeds could be increased.


Crop Science ◽  
1998 ◽  
Vol 38 (3) ◽  
pp. 827-834 ◽  
Author(s):  
I. C. Madakadze ◽  
B. E. Coulman ◽  
P. Peterson ◽  
K. A. Stewart ◽  
R. Samson ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 134
Author(s):  
Sabine Stuerz ◽  
Folkard Asch

Predictions of future crop growth and yield under a changing climate require a precise knowledge of plant responses to their environment. Since leaf growth increases the photosynthesizing area of the plant, it occupies a central position during the vegetative phase. Rice is cultivated in diverse ecological zones largely differing in temperature and relative air humidity (RH). To investigate the effects of temperature and RH during day and night on leaf growth, one variety (IR64) was grown in a growth chamber using 9 day/night regimes around the same mean temperature and RH, which were combinations of 3 temperature treatments (30/20 °C, 25/25 °C, 20/30 °C day/night temperature) and 3 RH treatments (40/90%, 65/65%, 90/40% day/night RH). Day/night leaf elongation rates (LER) were measured and compared to leaf gas exchange measurements and leaf area expansion on the plant level. While daytime LER was mainly temperature-dependent, nighttime LER was equally affected by temperature and RH and closely correlated with leaf area expansion at the plant level. We hypothesize that the same parameters increasing LER during the night also enhance leaf area expansion via shifts in partitioning to larger and thinner leaves. Further, base temperatures estimated from LERs varied with RH, emphasizing the need to take RH into consideration when modeling crop growth in response to temperature.


Sign in / Sign up

Export Citation Format

Share Document