Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana

2004 ◽  
Vol 31 (3) ◽  
pp. 217 ◽  
Author(s):  
Elizabeth M. Brill ◽  
John M. Watson

A new MADS-box gene, EgrSVP was isolated from vegetative tips of Eucalyptus grandis Hill ex Maiden saplings. This gene was expressed in vegetative tissues such as shoots, leaves and roots, as well as in unopened floral buds. DNA sequence alignments indicate that EgrSVP shares the highest level of sequence identity with PkMADS1, JOINTLESS, IbMADS3 and SVP. Phylogenetically, it is grouped in the JOINTLESS clade, the members of which share similar expression patterns. Transgenic Arabidopsis thaliana (L.) Heynh. plants overexpressing EgrSVP, exhibited a variety of altered phenotypes, including homeotic floral organ transformation, indeterminate floral development, multiple inflorescences and coflorescences, and some degree of late flowering.The nucleotide sequence data reported will appear in the GenBank Nucleotide Database under the accession number AY263809.


2004 ◽  
Vol 31 (3) ◽  
pp. 225 ◽  
Author(s):  
John M. Watson ◽  
Elizabeth M. Brill

In a search for Eucalyptus grandis Hill ex Maiden MADS-box genes involved in floral initiation and development, we isolated two cDNAs (EgrMADS 3 and EgrMADS 4), which are functional orthologues of the Arabidopsis thaliana (L.) Heynh. floral activator gene SOC1. These two E. grandis genes are equally and most-actively expressed in vegetative tissues such as apical shoots and young leaves. The two genes are less actively, but differentially expressed in roots and unopened flowers. Ectopic expression of EgrMADS 3 or EgrMADS 4 in the late-flowering A. thaliana Ler soc1 (agl20) derivative complemented the phenotype of this mutant, and some of these transgenic lines flowered significantly earlier than the wild-type Ler ecotype. Overexpression of EgrMADS 3 or EgrMADS 4 in A. thaliana ecotype Columbia accelerated flowering time under short-day conditions. However, under the same conditions the flowering time of A. thaliana ecotype C24 was altered by the ectopic expression of EgrMADS 3, but not that of EgrMADS 4.The nucleotide sequence data reported will appear in the EMBL and GenBank Nucleotide Databases under the accession numbers AY263807 (EgrMADS 3) and AY263808 (EgrMADS 4).





1999 ◽  
Vol 26 (5) ◽  
pp. 495 ◽  
Author(s):  
Kazumasa Yoshida ◽  
Kiyoshi Tazaki

Three genomic clones (Rplec2, Rplec5 and Rplec6) and a cDNA clone (LECRPA4) that encoded lectin or lectin-related polypeptides were isolated from Robinia pseudoacacia L. A comparison of the nucleotide sequences of Rplec2 and a previously reported cDNA for the subunit indicated that Rplec2 encoded the 29 kDa subunit of the inner-bark lectin RPbAI. Rplec5 encoded a polypeptide whose deduced amino acid sequence was 96.1% identical to that of a subunit of seed lectin. The amino acid sequence deduced from the open reading frame of Rplec6 showed 61.1% identity to that encoded by Rplec5. LECRPA4 was isolated from an inner bark cDNA library and appeared to encode the 26 kDa subunit of inner-bark lectin RPbAII. The expression patterns of the various genes in tissues were examined by the reverse transcriptase-polymerase chain reaction (RT-PCR) with appropriate primers. Rplec2 transcripts were detected in the inner bark and roots. Rplec5 transcripts were detected in the inner bark, seeds and roots. No Rplec6 transcripts were detected in all tissues examined. LECRPA4 transcripts were found in leaves and in the inner bark. The level of expression of Rplec2 in the inner bark appeared to be similar in samples collected in different years and from different trees, whereas levels of expression of Rplec5 and LECRPA4 varied. These results suggest the differential regulation of expression of members of the lectin gene family in tissues of R. pseudoacacia. The nucleotide sequence data reported herein will appear in the DDBJ, EMBL and GenBank Nucleotide Sequence Databases under the accession numbers AB 012632 (Rplec2), AB012633 (Rplec5), AB012634 (Rplec6) and AB012635 (LECRPA4).



2001 ◽  
Vol 52 (8) ◽  
pp. 1037 ◽  
Author(s):  
Margaret B. Ptacek ◽  
Shane K. Sarver ◽  
Michael J. Childress ◽  
William F. Herrnkind

Phylogenetic relationships among all described species and four subspecies (total of 21 taxa) of the spiny lobster genus Panulirus White, 1847, were examined with nucleotide sequence data from portions of two mitochondrial genes, large-subunit ribosomal RNA (16S) and cytochrome oxidase subunit I (COI). Multiple sequence alignments were subjected to maximum-parsimony, neighbour-joining, and maximum-likelihood analysis with Jasus edwardsii as the outgroup. Two major lineages within Panulirus were recovered by all three methods for both the 16S and COI alignments analysed separately and for the combined alignment. The first lineage included all species of Panulirus classified as Groups I and II by previous morphologically based definitions. The second included all species classified as Groups III and IV. Relationships within major lineages were not well resolved; the molecular phylogeny did not support separation of Group I from Group II or of Group III from Group IV. The degree of sequence divergence between different pairs of species was higher in pairwise comparisons between species in Group I/II (16S: 2.8–19.4%; COI: 12.4–31.8%) than in those between species in Group III/IV (16S: 5.3–13.2%; COI: 12.6–19.6%). This pattern suggests that the Group I/II lineage may represent an earlier radiation of species within Panulirus.



2019 ◽  
Vol 20 (12) ◽  
pp. 2961 ◽  
Author(s):  
Yunshu Wang ◽  
Jianling Zhang ◽  
Zongli Hu ◽  
Xuhu Guo ◽  
Shibing Tian ◽  
...  

MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mβ, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon–intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.



Author(s):  
S. Lee ◽  
J. S. Jeon ◽  
Y. H. Moon ◽  
Y. Y. Chung ◽  
G. An


2021 ◽  
Vol 22 (21) ◽  
pp. 12010
Author(s):  
Yingzhu Liu ◽  
Yike Gao ◽  
Lin Yuan ◽  
Qixiang Zhang

SHORT VEGETATIVE PHASE (SVP) genes are members of the well-known MADS-box gene family that play a key role in regulating vital developmental processes in plants. Hemerocallis are perennial herbs that exhibit continuous flowering development and have been extensively used in landscaping. However, there are few reports on the regulatory mechanism of flowering in Hemerocallis. To better understand the molecular basis of floral formation of Hemerocallis, we identified and characterized the SVP-like gene HkSVP from the Hemerocallis cultivar ‘Kanai Sensei’. Quantitative RT-PCR (qRT-PCR) indicated that HkSVP transcript was mainly expressed in the vegetative growth stage and had the highest expression in leaves, low expression in petals, pedicels and fruits, and no expression in pistils. The HkSVP encoded protein was localized in the nucleus of Arabidopsis protoplasts and the nucleus of onion epidermal cells. Yeast two hybrid assay revealed that HKSVP interacted with Hemerocallis AP1 and TFL1. Moreover, overexpression of HkSVP in Arabidopsis resulted in delayed flowering and abnormal phenotypes, including enriched trichomes, increased basal inflorescence branches and inhibition of inflorescence formation. These observations suggest that the HkSVP gene may play an important role in maintaining vegetative growth by participating in the construction of inflorescence structure and the development of flower organs.



2018 ◽  
Vol 47 (D1) ◽  
pp. D195-D202 ◽  
Author(s):  
Valentina Galata ◽  
Tobias Fehlmann ◽  
Christina Backes ◽  
Andreas Keller

Abstract The study of bacterial isolates or communities requires the analysis of the therein included plasmids in order to provide an extensive characterization of the organisms. Plasmids harboring resistance and virulence factors are of especial interest as they contribute to the dissemination of antibiotic resistance. As the number of newly sequenced bacterial genomes is growing a comprehensive resource is required which will allow to browse and filter the available plasmids, and to perform sequence analyses. Here, we present PLSDB, a resource containing 13 789 plasmid records collected from the NCBI nucleotide database. The web server provides an interactive view of all obtained plasmids with additional meta information such as sequence characteristics, sample-related information and taxonomy. Moreover, nucleotide sequence data can be uploaded to search for short nucleotide sequences (e.g. specific genes) in the plasmids, to compare a given plasmid to the records in the collection or to determine whether a sample contains one or multiple of the known plasmids (containment analysis). The resource is freely accessible under https://ccb-microbe.cs.uni-saarland.de/plsdb/.



Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1748
Author(s):  
Zhanghui Zeng ◽  
Si Chen ◽  
Mingrui Xu ◽  
Min Wang ◽  
Zhehao Chen ◽  
...  

GLOBOSA (GLO), a B-class MADS-box gene, is involved in floral organ determination but has rarely been studied in Osmanthus fragrans, which is a very popular ornamental tree species in China. Here, the full-length cDNA of a homologous GLO1 gene (named OfGLO1) was cloned from a flower bud of O. fragrans using the RACE technique. The OfGLO1 has a 645 bp open reading frame, encoding 214 amino acids. Similar to other PI/GLO proteins, OfGLO1 has two conserved domains, MADS MEF2-like and K-box, and a 16-amino-acid PI motif in the C terminal region. Our phylogeny analysis classified OfGLO1 as a PI-type member of the B-class MADS-box gene family. The qRT-PCR assay showed that the expression of OfGLO1 in O. fragrans was continuously upregulated from the tight bud stage to the full flowering stage but barely expressed in the pistils, sepals, and non-floral organs, such as root, leaf, and stem. The genetic effect of OfGLO1 was assayed by ectopic expression in tobacco plants. Compared with the wild-type, OfGLO1 transformants showed reduced plant size, earlier flowering, shorter stamens, and lower seed setting rates. Furthermore, some stamens were changed into petal-like structures. These findings indicate that OfGLO1 plays an important role in the regulation of flower development. This study improved our understanding of class B gene function in woody plants.



Sign in / Sign up

Export Citation Format

Share Document