scholarly journals Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea

2014 ◽  
Vol 41 (11) ◽  
pp. 1148 ◽  
Author(s):  
Rashmi Awasthi ◽  
Neeru Kaushal ◽  
Vincent Vadez ◽  
Neil C. Turner ◽  
Jens Berger ◽  
...  

High temperatures and decreased rainfall are detrimental to yield in chickpea (Cicer arietinum L.), particularly during grain filling. This study aimed to (i) assess the individual and combined effects of drought and heat stress on biochemical seed-filling processes, (ii) determine genotypic differences in heat and drought tolerance, and (iii) determine any cross-tolerance. Plants were grown outdoors in the normal growing season when temperatures during seed filling were <32−20°C or were planted late (temperatures >32−20°C; heat stress). Half of the pots were kept adequately watered throughout, but water was withheld from the others from the initiation of seed filling until the relative leaf water content reached 50% of the irrigated plants (drought stress); all plants were rewatered thereafter until seed maturit. Water was withheld for 13 days (normal sowing) and 7 days (late sowing), so soil moisture decreased by 54–57%. Tests on leaves and seeds were performed after the stress. Individual and combined stress damaged membranes, and decreased cellular oxidising ability, stomatal conductance, PSII function and leaf chlorophyll content; damage was greater under combined stress. Leaf Rubisco activity increased with heat stress, decreased with drought stress and decreased severely with combined stress. Sucrose and starch concentrations decreased in all seeds through reductions in biosynthetic enzymes; reductions were greater under combined stress. These effects were more severe in heat- and drought-sensitive genotypes compared with drought-tolerant genotypes. Drought stress had a greater effect than heat stress on yield and the biochemical seed-filling mechanisms. Drought- and heat-tolerant genotypes showed partial cross-tolerance.

2017 ◽  
Vol 68 (9) ◽  
pp. 823 ◽  
Author(s):  
Rashmi Awasthi ◽  
Pooran Gaur ◽  
Neil C. Turner ◽  
Vincent Vadez ◽  
Kadambot H. M. Siddique ◽  
...  

Drought and heat stress are two major constraints that limit chickpea (Cicer arietinum L.) yield, particularly during seed filling. The present study aimed (i) to assess the individual and combined effects of drought and heat stress on oxidative metabolism during seed filling, and (ii) to determine any genetic variation in oxidative metabolism among genotypes differing in drought and heat tolerance and sensitivity. The plants were raised in outdoor conditions with two different times of sowing, one in November (normal-sown, temperatures <32°C−20°C (day–night) during seed filling), and the other in February (late-sown, temperatures >32°C−20°C (day–night) during seed filling). Plants were regularly irrigated to prevent any water shortage until the water treatments were applied. At both sowing times, the drought treatment was applied during seed filling (at ~75% podding) by withholding water from half of the pots until the relative leaf water content (RLWC) of leaves on the top three branches reached 42–45%, whereas leaves in the fully irrigated control plants were maintained at RLWC 85–90%. Drought-stressed plants were then rewatered and maintained under fully irrigated conditions until maturity. Several biochemical parameters were measured on the leaves and seeds at the end of the stress treatments, and seed yield and aboveground biomass were measured at maturity. Individual and combined stresses damaged membranes, and decreased PSII function and leaf chlorophyll content, more so under the combined stress treatment. The levels of oxidative molecules (malondialdehyde (MDA) and H2O2) markedly increased compared with the control plants in all stress treatments, especially across genotypes in the combined heat + drought stress treatment (increases in leaves: MDA 5.4–8.4-fold and H2O2 5.1–7.1-fold; in seeds: MDA 1.9–3.3-fold and H2O2 3.8–7.9-fold). The enzymatic and non-enzymatic antioxidants related to oxidative metabolism increased under individual stress treatments but decreased in the combined heat + drought stress treatment. Leaves had higher oxidative damage than seeds, and this likely inhibited their photosynthetic efficiency. Yields were reduced more by drought stress than by heat stress, with the lowest yields in the combined heat + drought stress treatment. Heat- and drought-tolerant genotypes suffered less damage and had higher yields than the heat- and drought-sensitive genotypes under the individual and combined stress treatments, suggesting partial cross-tolerance in these genotypes. A drought-tolerant genotype ICC8950 produced more seed yield under the combined heat + drought stress than other genotypes, and this was associated with low oxidative damage in leaves and seeds.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 364
Author(s):  
Lamis Osama Anwar Abdelhakim ◽  
Eva Rosenqvist ◽  
Bernd Wollenweber ◽  
Ioannis Spyroglou ◽  
Carl-Otto Ottosen ◽  
...  

As drought and heat stress are major challenges for crop productivity under future climate changes, tolerant cultivars are highly in demand. This study investigated the potential of existing Nordic wheat genotypes to resist unfavorable conditions. Four genotypes were selected based on their heat sensitivity (heat-sensitive: LM19, SF1; heat-tolerant: LM62, NS3). At the tillering stage, the plants were subjected to four treatments under controlled conditions: control, drought, heat and combined drought and heat stress. The morpho-physiological performance was quantified during the early and late phase of stress, as well as the recovery phase. We applied an integrative image-based phenotyping approach monitoring plant growth dynamics by structural Red Green Blue (RGB) imaging, photosynthetic performance by chlorophyll fluorescence imaging and transpiration efficiency by thermal infrared imaging. The results demonstrated that the selected genotypes were moderately affected in their photosynthetic efficiency and growth under drought stress, whereas heat and combined stress caused rapid reductions in photosynthesis and growth. Furthermore, drought stress had a major impact on canopy temperature. The NS3 genotype was the most robust genotype, as indicated by its improved response under all stress treatments due to its relatively small biomass. However, the genotypes showed different tolerance to individual and combined stress.


2021 ◽  
Vol 1 (2) ◽  
pp. 77-79
Author(s):  
Sandesh Paudel ◽  
Netra Prasad Pokharel ◽  
Susmita Adhikari ◽  
Sarah Poudel

Bread wheat (Triticum aestivum L.) belonging to family Poaceae is the most important cereal crop as it contributes major portion to the world food for the world’s population. Similarly, it is the third most cultivated cereal crop in Nepal in terms of production and area. Wheat is a winter season crop which is usually grown within a temperature range of 15-250C in cold and dry weather. However frequent irrigations are crucial for proper growth of the plant, high yield and high quality of the grain. The annual productivity of wheat has been reported to be 2.49 tons per hectare. Water is found to be one of the most important factors in wheat production and by far not a single water stress tolerant variety has been introduced thus water management is necessary. In Nepal around 35% of the total wheat is cultivated under rainfed condition annually and in Terai this is around 19%. This cultivated area faces a severe drought stress during growing stage and heat stress during anthesis stage. Various studies have suggested that the combined impacts of drought and heat stress had a significant harmful effect on wheat than individual stresses (Stress and Review, 2017). Under drought stress days to anthesis and days to maturity were reduced by 10% and 14% while under heat stress these were reduced by 16% and 20% respectively. Combined effect of drought and heat stress caused reduction in DTA by 25% DTH by and 31%.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 518 ◽  
Author(s):  
Nelimor ◽  
Badu-Apraku ◽  
Tetteh ◽  
N’guetta

Climate change is expected to aggravate the effects of drought, heat and combined drought and heat stresses. An important step in developing ‘climate smart’ maize varieties is to identify germplasm with good levels of tolerance to the abiotic stresses. The primary objective of this study was to identify landraces with combined high yield potential and desirable secondary traits under drought, heat and combined drought and heat stresses. Thirty-three landraces from Burkina Faso (6), Ghana (6) and Togo (21), and three drought-tolerant populations/varieties from the Maize Improvement Program at the International Institute of Tropical Agriculture were evaluated under three conditions, namely managed drought stress, heat stress and combined drought and heat stress, with optimal growing conditions as control, for two years. The phenotypic and genetic correlations between grain yield of the different treatments were very weak, suggesting the presence of independent genetic control of yield to these stresses. However, grain yield under heat and combined drought and heat stresses were highly and positively correlated, indicating that heat-tolerant genotypes would most likely tolerate combined drought and stress. Yield reduction averaged 46% under managed drought stress, 55% under heat stress, and 66% under combined drought and heat stress, which reflected hypo-additive effect of drought and heat stress on grain yield of the maize accessions. Accession GH-3505 was highly tolerant to drought, while GH-4859 and TZm-1353 were tolerant to the three stresses. These landrace accessions can be invaluable sources of genes/alleles for breeding for adaptation of maize to climate change.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Rong Zhou ◽  
Xiaqing Yu ◽  
Carl-Otto Ottosen ◽  
Eva Rosenqvist ◽  
Liping Zhao ◽  
...  

Author(s):  
M.I. Cayetano-Marcial ◽  
C.B. Peña-Valdivia ◽  
A. García Esteva ◽  
J.C. Jiménez Galindo ◽  
I.G. Galván Escobedo ◽  
...  

Background: Common bean (Phaseolus vulgaris L.) grain filling is vulnerable to drought and heat stress. The objective of the study was to evaluate the effect of humidity restriction, high night temperatures and their combination in common bean.Methods: The plants were grown in pots at maximum field capacity (100% FC) until the grain filling began. Afterwards, maintained until harvest at: 1) 100% FC, 2) 50% FC at ambient day/night temperature (AT), 22.58°C/16.94°C, 3) 100% FC with high night temperature (HNT) 21.47°C and 4) 50% FC with HNT (combined stress). Evaluations included phenotypic assessment using red-green-blue color segmentation in: green (healthy), yellow (senescence) and brown (necrotic). Result: The combined stress in the cv. Rosa Bufa significantly and synchronously accelerated leaves and pods senescence. In contrast, in leaves of cv. OTI, the loss of green color began several days earlier than in pods. The effect of HNT and combined stress depends on common bean cultivar.


Author(s):  
V. Rajeswari ◽  
D. Vijayalakshmi ◽  
S. Srinivasan ◽  
R. Swarnapriya ◽  
S. Varanavasiappan ◽  
...  

Drought spells and heat stress have become quite common and agricultural production would experience a lag in near future. The combined effect of heat and drought stress is expected to cause negative impact on crop growth. Hence, an experiment was framed to assess the morphological and photosynthetic characters of chilli under combined drought and heat stress. Three different genotypes of chilli viz., K1, TNAU chilli hybrid CO 1, Ramanathapuram gundu were subjected to seven drought and temperature treatments. The experiment was designed in factorial completely randomized design (FCRD) at temperature controlled Open Top Chambers (OTC) and drought stress was gravimetically assesed. The results showed that, morphology and photosynthetic characters were affected irrespective of genotypes. The maximum reduction in plant height and leaf area was observed when plants were grown under 40% pot capacity and temperature of + 5°C from the ambient condition. The study also revealed that, the reduction of gas exchange parameters at 40% PC and A + 5°C with yield reduction of almost 76 per cent irrespective of genotypes. Stress treatments reduced the fruit length, fruit diameter compared to control in all genotypes. Stress Tolerence Index was calculated to study the physiological basis under combined drought and heat stress. The optimum level of stress by STI of 0.501 in 60% PC and A+ 3°C was standardized to study the basic physiological functions of chilli.


2018 ◽  
Vol 229 ◽  
pp. 66-77 ◽  
Author(s):  
Lovely Mae F. Lawas ◽  
Wanju Shi ◽  
Mayumi Yoshimoto ◽  
Toshihiro Hasegawa ◽  
Dirk K. Hincha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document