Heterotrimeric G-proteins involved in the MeJA regulated ion flux and stomatal closure in Arabidopsis thaliana

2015 ◽  
Vol 42 (2) ◽  
pp. 126 ◽  
Author(s):  
Suli Yan ◽  
Shuitian Luo ◽  
Shanshan Dong ◽  
Ting Zhang ◽  
Jingru Sun ◽  
...  

Heterotrimeric G-proteins play an important role in plant signalling pathways. The plant hormone methyl jasmonate (MeJA) can induce stomatal closure in many plant species. The signal cascade in MeJA-induced stomatal closure has been studied previously. However, the function of G proteins in this process has not yet been evaluated. In this study, the stomatal movement induced by MeJA in the wild-type Arabidopsis thaliana (L. Heynh.) (WS), Gα subunit loss-of-function mutant gpa1–1 and gpa1–2 guard cells were measured. Further, the transmembrane ion flux (H+, Ca2+ and K+) and reactive oxygen species (ROS) experiments were performed in guard cells from WS, GDP-β-S pre-treated WS, gpa1–1 and gpa1–2 using non-invasive micro-test technique (NMT) and confocal technique. It was observed that the MeJA-induced stomatal closure was abolished in guard cells of gpa1 mutants. GDP-β-S pre-treatment and gpa1 mutants impaired the MeJA-activated H+ efflux, Ca2+ influx and K+ efflux. The accumulation of ROS in gpa1–1 and gpa1–2 guard cells was also lower than that in WS guard cells under MeJA treatment. These results suggested that Gα subunits are involved in regulating the signal events in JA signal pathway and stomatal closure.

2021 ◽  
Vol 48 (2) ◽  
pp. 195 ◽  
Author(s):  
Yinli Ma ◽  
Luhan Shao ◽  
Wei Zhang ◽  
Fengxi Zheng

The role of hydrogen sulfide (H2S) and its relationship with hydrogen peroxide (H2O2) in brassinosteroid-induced stomatal closure in Arabidopsis thaliana (L.) Heynh. were investigated. In the present study, 2,4-epibrassinolide (EBR, a bioactive BR) induced stomatal closure in the wild type, the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor. However, EBR failed to close the stomata of mutants Atl-cdes, Atd-cdes, AtrbohF and AtrbohD/F. Additionally, EBR induced increase of L-/D-cysteine desulfhydrase (L-/D-CDes) activity, H2S production, and H2O2 production in the wild type, and the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor respectively. Furthermore, EBR increased H2O2 levels in the guard cells of AtrbohD mutant, but couldn’t raise H2O2 levels in the guard cells of AtrbohF and AtrbohD/F mutants. Next, scavengers and synthesis inhibitor of H2O2 could significantly inhibit EBR-induced rise of L-/D-CDes activity and H2S production in the wild type, but H2S scavenger and synthesis inhibitors failed to repress EBR-induced H2O2 production. EBR could increase H2O2 levels in the guard cells of Atl-cdes and Atd-cdes mutants, but EBR failed to induce increase of L-/D-CDes activity and H2S production in AtrbohF and AtrbohD/F mutants. Therefore, we conclude that H2S and H2O2 are involved in the signal transduction pathway of EBR-induced stomatal closure. Altogether, our data suggested that EBR induces AtrbohF-dependent H2O2 production and subsequent AtL-CDes-/AtD-CDes-catalysed H2S production, and finally closes stomata in A. thaliana.


Author(s):  
Md Tahjib-Ul-Arif ◽  
Shintaro Munemasa ◽  
Toshiyuki Nakamura ◽  
Yoshimasa Nakamura ◽  
Yoshiyuki Murata

Abstract Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.


2021 ◽  
Author(s):  
Michael Thieme ◽  
Arthur Brêchet ◽  
Yann Bourgeois ◽  
Bettina Keller ◽  
Etienne Bucher ◽  
...  

Plant genomes comprise a vast diversity of transposable elements (TEs) (Tenaillon et al. 2010)⁠. While their uncontrolled proliferation can have fatal consequences for their host, there is strong evidence for their importance in fueling genetic diversity and plant evolution (Baduel et al. 2021)⁠. However, the number of studies addressing the role of TEs in this process is limited. Here we show that the heat-induced burst of a low-copy TE increases phenotypic diversity and leads to the rapid emergence of more drought-resistant individuals of Arabidopsis thaliana. We exposed TE-high-copy-(hc)lines (Thieme et al. 2017)⁠ with up to ~8 fold increased copy numbers of the heat-responsive ONSEN-TE (AtCOPIA78) (Ito et al. 2011; Cavrak et al. 2014; Tittel-Elmer et al. 2010)⁠ in the wild type background to desiccation as a straightforward and highly relevant selection pressure. We found evidence for a drastic increase of drought resistance in five out of the 23 tested hc-lines and further pinpoint one of the causative mutations to an exonic ONSEN-insertion in the ribose-5-phosphate-isomerase 2 gene. This loss-of-function mutation resulted in a decreased rate of photosynthesis and water consumption. This is one of the rare examples (Esnault et al. 2019)⁠ experimentally demonstrating the adaptive potential of mobilized stress-responsive TEs in eukaryotes. Our results further shed light on the complex relationship between mobile elements and their hosts and substantiate the importance of TE-mediated loss-of-function mutations in stress adaptation, particularly with respect to global warming.


Nature ◽  
2003 ◽  
Vol 423 (6940) ◽  
pp. 651-654 ◽  
Author(s):  
Sylvie Coursol ◽  
Liu-Min Fan ◽  
Hervé Le Stunff ◽  
Sarah Spiegel ◽  
Simon Gilroy ◽  
...  

2014 ◽  
Vol 41 (8) ◽  
pp. 803 ◽  
Author(s):  
Xiao-Min Ge ◽  
Yan Zhu ◽  
Jun-Min He

The role and the interrelationship of cytosolic alkalisation and nitric oxide (NO) in UVB-induced stomatal closure were investigated in Arabidopsis thaliana (L.) Heynh. by stomatal bioassay and laser-scanning confocal microscopy. In response to 0.5 W m–2 UVB radiation, the rise of NO levels in guard cells occurred after cytosolic alkalisation but preceded stomatal closure. UVB-induced NO production and stomatal closure were both inhibited by NO scavengers, nitrate reductase (NR) inhibitors and a Nia2–5/Nia1–2 mutation, and also by butyrate. Methylamine induced NO generation and stomatal closure in the wild-type but not in the Nia2–5/Nia1–2 mutant or wild-type plants pretreated with NO scavengers or NR inhibitors while enhancing the cytosolic pH in guard cells under light. NO generation in wild-type guard cells was largely induced after 60 min of UVB radiation. The defect in UVB-induced NO generation in Nia2–5/Nia1–2 guard cells did not affect the changes of guard cell pH before 60 min of UVB radiation, but prevented the UVB-induced cytosolic alkalisation after 60 min of radiation. Meanwhile, exogenous NO caused a marked rise of cytosolic pH in guard cells. Together, our results show that cytosolic alkalisation and NR-dependent NO production coordinately function in UVB signalling in A. thaliana guard cells.


2016 ◽  
Vol 11 (8) ◽  
pp. e1212798 ◽  
Author(s):  
Eric Brenya ◽  
Yuri Trusov ◽  
Ralf Georg Dietzgen ◽  
José Ramón Botella

2021 ◽  
Vol 12 ◽  
Author(s):  
Reira Suzuki ◽  
Mizuki Yamada ◽  
Takumi Higaki ◽  
Mitsuhiro Aida ◽  
Minoru Kubo ◽  
...  

Parasitic root-knot nematodes transform the host’s vascular cells into permanent feeding giant cells (GCs) to withdraw nutrients from the host plants. GCs are multinucleated metabolically active cells with distinctive cell wall structures; however, the genetic regulation of GC formation is largely unknown. In this study, the functions of the Arabidopsis thaliana transcription factor PUCHI during GC development were investigated. PUCHI expression was shown to be induced in early developing galls, suggesting the importance of the PUCHI gene in gall formation. Despite the puchi mutant not differing significantly from the wild type in nematode invasion and reproduction rates, puchi GC cell walls appeared to be thicker and lobate when compared to the wild type, while the cell membrane sometimes formed invaginations. In three-dimensional (3D) reconstructions of puchi GCs, they appeared to be more irregularly shaped than those in the wild type, with noticeable cell-surface protrusions and folds. Interestingly, the loss-of-function mutant of 3-KETOACYL-COA SYNTHASE 1 showed GC morphology and cell wall defects similar to those of the puchi mutant, suggesting that PUCHI may regulate GC development via very long chain fatty acid synthesis.


2021 ◽  
Author(s):  
Debarati Basu ◽  
Jennette M. Codjoe ◽  
Kira Veley ◽  
Elizabeth Haswell

Plants sense and respond to molecular signals associated with the presence of pathogens and their virulence factors. Mechanical signals generated during pathogenic invasion may also be important, but their contributions have rarely been studied. Here we investigate the potential role of a mechanosensitive ion channel, MscS-Like (MSL)10, in defense against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. We previously showed that overexpression of MSL10-GFP, phospho-mimetic versions of MSL10, and the gain-of-function allele msl10-3G all produce dwarfing, spontaneous cell death, and the hyperaccumulation of reactive oxygen species. These phenotypes are shared by many autoimmune mutants and are frequently suppressed by growth at high temperature in those lines. Here, we found that the same was true for all three MSL10 hypermorphs. In addition, we show that the SGT1/RAR1/HSP90 co-chaperone complex was required for dwarfing and ectopic cell death, PAD4 and SID2 were partially required, and the immune regulators EDS1 and NDR1 were dispensable. All MSL10 hypermorphs exhibited reduced susceptibility to infection by P. syringae strain Pto DC3000, Pto DC3000 expressing the avirulence genes avrRpt2 or avrRpm1, but not Pto DC3000 hrpL, and showed an accelerated induction of PR1 expression compared to wild-type plants. Null msl10-1 mutants were delayed in PR1 induction and displayed modest susceptibility to infection by COR-deficient Pst. Finally, stomatal closure was reduced in msl10-1 loss-of-function mutants in response to Pst COR−. These data show that MSL10 modulates pathogen responses and begin to address the possibility that mechanical signals are exploited by the plant for pathogen perception.


2018 ◽  
Vol 115 (36) ◽  
pp. 9038-9043 ◽  
Author(s):  
Juntaro Negi ◽  
Shintaro Munemasa ◽  
Boseok Song ◽  
Ryosuke Tadakuma ◽  
Mayumi Fujita ◽  
...  

Stomatal guard cells develop unique chloroplasts in land plant species. However, the developmental mechanisms and function of chloroplasts in guard cells remain unclear. In seed plants, chloroplast membrane lipids are synthesized via two pathways: the prokaryotic and eukaryotic pathways. Here we report the central contribution of endoplasmic reticulum (ER)-derived chloroplast lipids, which are synthesized through the eukaryotic lipid metabolic pathway, in the development of functional guard cell chloroplasts. We gained insight into this pathway by isolating and examining an Arabidopsis mutant, gles1 (green less stomata 1), which had achlorophyllous stomatal guard cells and impaired stomatal responses to CO2 and light. The GLES1 gene encodes a small glycine-rich protein, which is a putative regulatory component of the trigalactosyldiacylglycerol (TGD) protein complex that mediates ER-to-chloroplast lipid transport via the eukaryotic pathway. Lipidomic analysis revealed that in the wild type, the prokaryotic pathway is dysfunctional, specifically in guard cells, whereas in gles1 guard cells, the eukaryotic pathway is also abrogated. CO2-induced stomatal closing and activation of guard cell S-type anion channels that drive stomatal closure were disrupted in gles1 guard cells. In conclusion, the eukaryotic lipid pathway plays an essential role in the development of a sensing/signaling machinery for CO2 and light in guard cell chloroplasts.


2020 ◽  
Vol 61 (10) ◽  
pp. 1788-1797
Author(s):  
Md. Moshiul Islam ◽  
Wenxiu Ye ◽  
Fahmida Akter ◽  
Mohammad Saidur Rhaman ◽  
Daiki Matsushima ◽  
...  

Abstract Production of reactive oxygen species (ROS) is a key signal event for methyl jasmonate (MeJA)- and abscisic acid (ABA)-induced stomatal closure. We recently showed that reactive carbonyl species (RCS) stimulates stomatal closure as an intermediate downstream of hydrogen peroxide (H2O2) production in the ABA signaling pathway in guard cells of Nicotiana tabacum and Arabidopsis thaliana. In this study, we examined whether RCS functions as an intermediate downstream of H2O2 production in MeJA signaling in guard cells using transgenic tobacco plants overexpressing A. thaliana 2-alkenal reductase (n-alkanal + NAD(P)+ ⇌ 2-alkenal + NAD(P)H + H+) (AER-OE tobacco) and Arabidopsis plants. The stomatal closure induced by MeJA was impaired in the AER-OE tobacco and was inhibited by RCS scavengers, carnosine and pyridoxamine, in the wild-type (WT) tobacco plants and Arabidopsis plants. Application of MeJA significantly induced the accumulation of RCS, including acrolein and 4-hydroxy-(E)-2-nonenal, in the WT tobacco but not in the AER-OE plants. Application of MeJA induced H2O2 production in the WT tobacco and the AER-OE plants and the H2O2 production was not inhibited by the RCS scavengers. These results suggest that RCS functions as an intermediate downstream of ROS production in MeJA signaling and in ABA signaling in guard cells.


Sign in / Sign up

Export Citation Format

Share Document