scholarly journals PUCHI Regulates Giant Cell Morphology During Root-Knot Nematode Infection in Arabidopsis thaliana

2021 ◽  
Vol 12 ◽  
Author(s):  
Reira Suzuki ◽  
Mizuki Yamada ◽  
Takumi Higaki ◽  
Mitsuhiro Aida ◽  
Minoru Kubo ◽  
...  

Parasitic root-knot nematodes transform the host’s vascular cells into permanent feeding giant cells (GCs) to withdraw nutrients from the host plants. GCs are multinucleated metabolically active cells with distinctive cell wall structures; however, the genetic regulation of GC formation is largely unknown. In this study, the functions of the Arabidopsis thaliana transcription factor PUCHI during GC development were investigated. PUCHI expression was shown to be induced in early developing galls, suggesting the importance of the PUCHI gene in gall formation. Despite the puchi mutant not differing significantly from the wild type in nematode invasion and reproduction rates, puchi GC cell walls appeared to be thicker and lobate when compared to the wild type, while the cell membrane sometimes formed invaginations. In three-dimensional (3D) reconstructions of puchi GCs, they appeared to be more irregularly shaped than those in the wild type, with noticeable cell-surface protrusions and folds. Interestingly, the loss-of-function mutant of 3-KETOACYL-COA SYNTHASE 1 showed GC morphology and cell wall defects similar to those of the puchi mutant, suggesting that PUCHI may regulate GC development via very long chain fatty acid synthesis.

2021 ◽  
Author(s):  
Mao-Yan Liu ◽  
De-Liang Peng ◽  
Wen Su ◽  
Chao Xiang ◽  
Jin-Zhuo Jian ◽  
...  

Abstract Background Potassium (K), an important nutrient element, can improve the stress resistance/tolerance of crops. The application of K in resisting plant parasitic nematodes shows that the K treatment can effectively reduce the occurrence of nematode diseases and increase crop yield. However, data on K2SO4 induced rice resistance to Meloidogyne graminicola are still lacking. To evaluate rice resistance against M. graminicola induced by K2SO4 and to further clarify its mechanism is essential for the rational use of K fertilizer to ensure the safety of rice production.Results In this work, K2SO4 treatment effectively reduced the numbers of both galls and nematodes in rice roots, and delayed the development of nematodes to the adult stage. Rather than by affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites, such effect was achieved by rapidly stimulating hydrogen peroxide (H2O2) accumulation, increasing callose deposition. Meanwhile, such induced resistance required the active participation of the potassium channel OsAKT1 and the potassium transporter OsHAK5. The numbers of both galls and nematodes were higher in both gene deficient plants than that in the wild-type plants, and the K2SO4-induced resistance showed weaker in the defective plants than in the wild-type plants.Conclusions K2SO4 treatment effectively induces rice resistance to root-knot nematode M. graminicola. The mechanism of inducing resistance is to prime the basic defense of rice, up-regulating the expression of resistance-related genes and with the involvement of K+ channel and transporter. These laid a foundation for further study on the mechanism of rice to defense against root-knot nematodes and the effective use of potassium fertilizer to improve rice resistance against nematodes in the field.


Author(s):  
Emmanuel Panteris ◽  
Anna Kouskouveli ◽  
Dimitris Pappas ◽  
Ioannis-Dimosthenis S. Adamakis

Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate, to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), while deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy, in root cells of the fra2 Arabidopsis thaliana mutant. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls appeared also faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild-type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild-type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation.


2021 ◽  
Vol 22 (3) ◽  
pp. 1405
Author(s):  
Emmanuel Panteris ◽  
Anna Kouskouveli ◽  
Dimitris Pappas ◽  
Ioannis-Dimosthenis S. Adamakis

Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast have been reported to occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), in root cells of the fra2 Arabidopsis thaliana loss-of-function mutant. In addition, deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls also appeared faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation.


2005 ◽  
Vol 18 (12) ◽  
pp. 1277-1284 ◽  
Author(s):  
Stéphanie Jaubert ◽  
Adina L. Milac ◽  
Andrei J. Petrescu ◽  
Janice de Almeida-Engler ◽  
Pierre Abad ◽  
...  

Esophageal secretions from endoparasitic sedentary nematodes are thought to play key roles throughout plant parasitism, in particular during the invasion of the root tissue and the initiation and maintenance of the nematode feeding site (NFS) essential for nematode development. The secretion in planta of esophageal cell-wall-degrading enzymes by migratory juveniles has been shown, suggesting a role for these enzymes in the invasion phase. Nevertheless, the secretion of an esophageal gland protein into the NFS by nematode sedentary stages has never been demonstrated. The calreticulin Mi-CRT is a protein synthesized in the esophageal glands of the root-knot nematode Meloidogyne incognita. After three-dimensional modeling of the Mi-CRT protein, a surface peptide was selected to raise specific antibodies. In planta immunolocalization showed that Mi-CRT is secreted by migratory and sedentary stage nematodes, suggesting a role for Mi-CRT throughout parasitism. During the maintenance of the NFS, the secreted Mi-CRT was localized outside the nematode at the tip of the stylet. In addition, Mi-CRT accumulation was observed along the cell wall of the giant cells that compose the feeding site, providing evidence for a nematode esophageal protein secretion into the NFS.


2019 ◽  
Vol 20 (21) ◽  
pp. 5465 ◽  
Author(s):  
Christianna Meidani ◽  
Nikoletta G. Ntalli ◽  
Eleni Giannoutsou ◽  
Ioannis-Dimosthenis S. Adamakis

Meloidogyne incognita is a root knot nematode (RKN) species which is among the most notoriously unmanageable crop pests with a wide host range. It inhabits plants and induces unique feeding site structures within host roots, known as giant cells (GCs). The cell walls of the GCs undergo the process of both thickening and loosening to allow expansion and finally support nutrient uptake by the nematode. In this study, a comparative in situ analysis of cell wall polysaccharides in the GCs of wild-type Col-0 and the microtubule-defective fra2 katanin mutant, both infected with M. incognita has been carried out. The fra2 mutant had an increased infection rate. Moreover, fra2 roots exhibited a differential pectin and hemicellulose distribution when compared to Col-0 probably mirroring the fra2 root developmental defects. Features of fra2 GC walls include the presence of high-esterified pectic homogalacturonan and pectic arabinan, possibly to compensate for the reduced levels of callose, which was omnipresent in GCs of Col-0. Katanin severing of microtubules seems important in plant defense against M. incognita, with the nematode, however, to be nonchalant about this “katanin deficiency” and eventually induce the necessary GC cell wall modifications to establish a feeding site.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 399
Author(s):  
Ambuj Srivastava ◽  
Dhanusha Yesudhas ◽  
Shandar Ahmad ◽  
M. Michael Gromiha

tRNA methyltransferase 5 (Trm5) enzyme is an S-adenosyl methionine (AdoMet)-dependent methyltransferase which methylates the G37 nucleotide at the N1 atom of the tRNA. The free form of Trm5 enzyme has three intrinsically disordered regions, which are highly flexible and lack stable three-dimensional structures. These regions gain ordered structures upon the complex formation with tRNA, also called disorder-to-order transition (DOT) regions. In this study, we performed molecular dynamics (MD) simulations of archaeal Trm5 in free and complex forms and observed that the DOT residues are highly flexible in free proteins and become stable in complex structures. The energetic contributions show that DOT residues are important for stabilising the complex. The DOT1 and DOT2 are mainly observed to be important for stabilising the complex, while DOT3 is present near the active site to coordinate the interactions between methyl-donating ligands and G37 nucleotides. In addition, mutational studies on the Trm5 complex showed that the wild type is more stable than the G37A tRNA mutant complex. The loss of productive interactions upon G37A mutation drives the AdoMet ligand away from the 37th nucleotide, and Arg145 in DOT3 plays a crucial role in stabilising the ligand, as well as the G37 nucleotide, in the wild-type complex. Further, the overall energetic contribution calculated using MMPBSA corroborates that the wild-type complex has a better affinity between Trm5 and tRNA. Overall, our study reveals that targeting DOT regions for binding could improve the inhibition of Trm5.


Science ◽  
2013 ◽  
Vol 341 (6150) ◽  
pp. 1103-1106 ◽  
Author(s):  
Ruben Vanholme ◽  
Igor Cesarino ◽  
Katarzyna Rataj ◽  
Yuguo Xiao ◽  
Lisa Sundin ◽  
...  

Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.


2009 ◽  
Vol 8 (10) ◽  
pp. 1475-1485 ◽  
Author(s):  
Thanyanuch Kriangkripipat ◽  
Michelle Momany

ABSTRACT Protein O-mannosyltransferases (Pmts) initiate O-mannosyl glycan biosynthesis from Ser and Thr residues of target proteins. Fungal Pmts are divided into three subfamilies, Pmt1, -2, and -4. Aspergillus nidulans possesses a single representative of each Pmt subfamily, pmtA (subfamily 2), pmtB (subfamily 1), and pmtC (subfamily 4). In this work, we show that single Δpmt mutants are viable and have unique phenotypes and that the ΔpmtA ΔpmtB double mutant is the only viable double mutant. This makes A. nidulans the first fungus in which all members of individual Pmt subfamilies can be deleted without loss of viability. At elevated temperatures, all A. nidulans Δpmt mutants show cell wall-associated defects and increased sensitivity to cell wall-perturbing agents. The Δpmt mutants also show defects in developmental patterning. Germ tube emergence is early in ΔpmtA and more frequent in ΔpmtC mutants than in the wild type. In ΔpmtB mutants, intrahyphal hyphae develop. All Δpmt mutants show distinct conidiophore defects. The ΔpmtA strain has swollen vesicles and conidiogenous cells, the ΔpmtB strain has swollen conidiophore stalks, and the ΔpmtC strain has dramatically elongated conidiophore stalks. We also show that AN5660, an ortholog of Saccharomyces cerevisiae Wsc1p, is modified by PmtA and PmtC. The Δpmt phenotypes at elevated temperatures, increased sensitivity to cell wall-perturbing agents and restoration to wild-type growth with osmoticum suggest that A. nidulans Pmts modify proteins in the cell wall integrity pathway. The altered developmental patterns in Δpmt mutants suggest that A. nidulans Pmts modify proteins that serve as spatial cues.


1972 ◽  
Vol 18 (6) ◽  
pp. 909-915 ◽  
Author(s):  
A. P. Singh ◽  
K.-J. Cheng ◽  
J. W. Costerton ◽  
E. S. Idziak ◽  
J. M. Ingram

The site of the cell barrier to actinomycin-D uptake was studied using a wild-type Escherichia coli strain P and its cell envelope-defective filamentous mutants, strains 6γ and 12γ, both of which 'leak' β-galactosidase and alkaline phosphatase into the medium during growth indicating both membrane and cell-wall defects. Actinomycin-D entered the cells of these two mutant strains as evidenced by the inhibition of both 14C-uracil incorporation and synthesis of the induced β-galactosidase system. Under similar conditions, no inhibition occurred in the wild-type strain and its sucrose-lysozyme prepared spheroplasts. Actinomycin-D did, however, inhibit the above-mentioned systems in the wild-type sucrose-lysozyme spheroplasts prepared in the presence of 2 mM EDTA. The experimental data indicate that although the cell wall may act as a primary barrier or sieve to actinomycin-D, the cytoplasmic membrane should be considered the final and determinative barrier to this antibiotic.


Sign in / Sign up

Export Citation Format

Share Document