Interactions between soybean, Bradyrhizobium japonicum and Soybean mosaic virus: the effects depend on the interaction sequence

2019 ◽  
Vol 46 (11) ◽  
pp. 1036 ◽  
Author(s):  
Sofía Andreola ◽  
Marianela Rodriguez ◽  
Rodrigo Parola ◽  
Sergio Alemano ◽  
Ramiro Lascano

The symbiotic interaction between soybean and nitrogen-fixing rhizobia can lead to plant growth promotion and induced systemic responses. Symbiotic interactions may increase tolerance/resistance to abiotic/biotic stress conditions, but are also sensitive to environmental conditions. Soybean mosaic virus (SMV), which is transmitted by seed and aphids, severely affects crop yields in many areas of the world, consequently virus infection may precede rhizobium infection or vice versa in the field. With the hypothesis that sequence of interaction is a key determinant of the resulting responses; growth, primary metabolism and defence responses were evaluated in different interaction sequences. Results showed that vegetative growth was promoted by Bradyrhizobium japonicum (Bj) inoculation and drastically impaired by SMV infection. The negative effect of SMV single infection on soybean growth parameters was correlated with photosynthesis decrease, sugar accumulation, oxidative damage, and increases in salicylic acid levels. Bj inoculation partially reversed virus-induced symptoms, mainly at Bj-SMV sequence. However, this symptom attenuation did not correlate with less virus accumulation. Nodulation was negatively affected by SMV, particularly when virus infection was previous to Bj inoculation (SMV-Bj). Defence related hormones (salicylic acid (SA)/jasmonic acid (JA)) and the expression of defence-related genes were dependent on the sequence of tripartite interaction. The present study showed that the sequence of the tripartite interaction among soybean, Bj and SMV determinates the tolerance/susceptibility to SMV infection, through changes in the defence mechanism and metabolic alteration.

2021 ◽  
Author(s):  
Bowen Li ◽  
Adhimoolam Karthikeyan ◽  
Liqun Wang ◽  
Jinlong Yin ◽  
Tongtong Jin ◽  
...  

Abstract Background: Soybean mosaic virus (SMV) is the most devastating pathogen of soybean. MicroRNAs (miRNAs) are a class of non-coding RNAs (21-24 nucleotides) and play important roles in regulating defense responses against pathogens. However, miRNA's response to SMV in soybean is not as well documented. Result: In this study, we analyzed 18 miRNA libraries, including three biological replicates from two soybean lines (Resistant and susceptible lines to SMV strain SC3 selected from the near-isogenic lines of Qihuang No. 1× Nannong1138-2) after virus infection at three different time intervals (0 dpi, 7 dpi, and 14 dpi). A total of 1,092 miRNAs, including 608 known miRNAs and 484 novel miRNAs were detected. Differential expression analyses identified the miRNAs responded during soybean-SMV interaction. Then, miRNAs potential target genes were predicted via data mining, and functional annotation was done by Gene Ontology (GO) analysis. Eventually, the expression patterns of several miRNAs validated by quantitative real-time PCR analysis are consistent with sequencing results. Conclusion: We have identified a large number of miRNAs and their target genes and also functional annotations. Our study provides additional information on soybean miRNAs and an insight into the role of miRNAs during SMV-infection in soybean.


2014 ◽  
Vol 14 (2) ◽  
pp. 152-159
Author(s):  
Wuye Ria Andayanie ◽  
Praptiningsih Gamawati Adinurani

Soybean lines selection of F4 population resistant  to soybean mosaic disease (Soybean mosaic virus) with high yield.  The soybean breeding program is usually not purposedly done for resistance to Soybean mosaic virus (SMV) but rather for crop yields. The experiment was aimed to obtain soybean lines of F4 population resistant to soybean mosaic disease with high yield.  F2-F4 plants that have been inoculated with the T isolate of SMV one week after planting were selected by the pedigree  in the screen house. The result indicated eight  F4 populations (Wilis x L. Temanggung; Wilis x L. Jombang; Wilis x Pangrango; Wilis x PI 200485;  Gepak Kuning x L. Jombang; Gepak Kuning x L. Temanggung; Gepak Kuning x Malabar; Gepak Kuning x PI 200485) produced medium seed size (from 9.84-10.26 g 100/seeds).  Gepak Kuning x Mlg 3288  showed more resistant than Gepak Kuning x PI 200485. The seed produced by Gepak Kuning x PI 200485 was 1.97 ton/ha. There were no F4 populations that had higher yield and bigger seed size than Gepak Kuning x PI 200485 even though they were  moderately resistant to SMV. Therefore, these lines of Gepak Kuning x Mlg 3288 and Gepak  Kuning x  PI 200485 might provide exellent sources to develop a new variety that resistant to SMV and of high yield.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1333-1336 ◽  
Author(s):  
H. A. Hobbs ◽  
G. L. Hartman ◽  
Y. Wang ◽  
C. B. Hill ◽  
R. L. Bernard ◽  
...  

Soybean seed coat mottling often has been a problematic symptom for soybean growers and the soybean industry. The percentages of seed in eight soybean lines with seed coat mottling were evaluated at harvest after inoculating plants during the growing season with Bean pod mottle virus (BPMV), Soybean mosaic virus (SMV), and both viruses inside an insect-proof cage in the field. Results from experiments conducted over 2 years indicated that plants infected with BPMV and SMV, alone or in combination, produced seed coat mottling, whereas noninoculated plants produced little or no mottled seed. BPMV and SMV inoculated on the same plants did not always result in higher percentages of mottled seed compared with BPMV or SMV alone. There was significant virus, line, and virus-line interaction for seed coat mottling. The non-seed-coat-mottling gene (Im) in Williams isoline L77-5632 provided limited, if any, protection against mottling caused by SMV and none against BPMV. The Peanut mottle virus resistance gene Rpv1 in Williams isoline L85-2308 did not give any protection against mottling caused by SMV, whereas the SMV resistance gene Rsv1 in Williams isoline L78-379 and the resistance gene or genes in the small-seeded line L97-946 gave high levels of protection against mottling caused by SMV. The correlations (r = 0.77 for year 2000 and r = 0.89 for year 2001) between virus infection of the parent plant and seed coat mottling were significant (P = 0.01), indicating that virus infection of plants caused seed coat mottling.


2011 ◽  
Vol 27 (4) ◽  
pp. 315-323 ◽  
Author(s):  
Hyoun-Sub Lim ◽  
Chan-Yong Jang ◽  
Han-Hong Bae ◽  
Joon-Ki Kim ◽  
Cheol-Ho Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document