The contrasting leaf functional traits between a karst forest and a nearby non-karst forest in south-west China

2019 ◽  
Vol 46 (10) ◽  
pp. 907 ◽  
Author(s):  
Pei-Li Fu ◽  
Shi-Dan Zhu ◽  
Jiao-Lin Zhang ◽  
Patrick M. Finnegan ◽  
Yan-Juan Jiang ◽  
...  

Karst and non-karst forests occur in the same region in south-west China, but the soil water and mineral nutrients availability are different between the forests. Our hypothesis was that the leaves of karst trees would be better adapted to dry, nutrient-poor conditions than those of trees in a nearby non-karst forest. We compared the gas exchange, anatomical characteristics and mineral nutrient concentrations in leaves from 21 tree species in a tropical karst forest and 19 species in a nearby non-karst forest in south-west China. We found that the leaves of karst trees had higher P concentrations, photosynthetic capacity and water use efficiency, and greater adaxial and abaxial epidermis thickness than leaves of non-karst forest trees. Evergreen and deciduous trees differed more significantly in leaf functional traits in the karst forest than in the non-karst forest. The leaf palisade:spongy mesophyll thickness ratio was positively correlated with stomatal conductance and negatively correlated with photosynthetic water use efficiency in the karst forest but not in the non-karst forest. Our findings indicate that karst forest trees are more conservative in water use, whereas soil P deficiency could be a major limiting factor for the growth of non-karst forest trees.

2004 ◽  
Vol 22 (2) ◽  
pp. 100-105
Author(s):  
Stuart L. Warren ◽  
Ted E. Bilderback

Abstract Rooted stem cuttings of ‘Skogholm’ cotoneaster (Cotoneaster dammeri ‘Skogholm’) potted into 14.2 liter (#5) containers in a pine bark: sand substrate were used to determine the effects of the nursery floor on plant growth, water use efficiency, substrate and plant canopy temperature, winter protection, and mineral nutrient efficacy. Four nursery floors were evaluated: black plastic, black ground fabric over black plastic, white plastic, and gravel from May 10, 2001, to April 23, 2002. Plants grown on gravel or ground fabric/black plastic had greater top and root dry weights compared to plants grown on white plastic. Water use efficiency was similar across all nursery floors, requiring an average 391 ml (13.2 oz) of water to produce a gram (0.04 oz) of plant material. Net photosynthetic rates of plants grown on black plastic, gravel, or ground fabric/black plastic were significantly greater than cotoneaster grown on white plastic. Plants grown on white plastic had significantly higher plant canopy [1 to 2C (1.8 to 3.6F)] and substrate temperatures [1 to 4C (1.8 to 7.2F)] daily from 1000 HR to 2000 HR throughout the summer months compared to all other nursery floors. Plant canopy and substrate temperatures were unaffected by the nursery floor during the winter months. Nitrogen efficiency was 42% on ground fabric/black plastic, 40% on gravel, 37% on black plastic and 33% on white plastic. Phosphorus efficiency was 53% on gravel, 52% on ground fabric/black plastic, 49% on black plastic and 43% on white plastic.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3037
Author(s):  
Yang-Si-Ding Wang ◽  
Da Yang ◽  
Huai-Dong Wu ◽  
Yun-Bing Zhang ◽  
Shu-Bin Zhang ◽  
...  

Identifying differences in ecophysiology between simple and compound leaves can help understand the adaptive significance of the compound leaf form and its response to climate change. However, we still know surprisingly little about differences in water and nutrient use, and photosynthetic capacity between co-occurring compound-leaved and simple-leaved tree species, especially in savanna ecosystems with dry-hot climate conditions. From July to September in 2015, we investigated 16 functional traits associated with water use, nutrients, and photosynthesis of six deciduous tree species (three simple-leaved and three compound-leaved species) coexisting in a valley-savanna in Southwest China. Our major objective was to test the variation in these functional traits between these two leaf forms. Overall, overlapping leaf mass per area (LMA), photosynthesis, as well as leaf nitrogen and phosphorus concentrations were found between these coexisting valley-savanna simple- and compound-leaved tree species. We didn’t find significant differences in water and photosynthetic nitrogen or phosphorus use efficiency between simple and compound leaves. Across these simple- and compound-leaved tree species, photosynthetic phosphorus use efficiencies were positively related to LMA and negatively correlated with phosphorus concentration per mass or area. Water use efficiency (intrinsic water use efficiency or stable carbon isotopic composition) was independent of all leaf traits. Similar ecophysiology strategies among these coexisting valley-savanna simple- and compound-leaved species suggested a convergence in ecological adaptation to the hot and dry environment. The overlap in traits related to water use, carbon assimilation, and stress tolerance (e.g., LMA) also suggests a similar response of these two leaf forms to a hotter and drier future due to the climate change.


Soil Research ◽  
2011 ◽  
Vol 49 (7) ◽  
pp. 625 ◽  
Author(s):  
Xianqing Hou ◽  
Zhikuan Jia ◽  
Qingfang Han ◽  
Rong Li ◽  
Wei Wang ◽  
...  

Winter wheat (Triticum aestivum L.) is a major crop grown generally in semi-arid areas of north-west China, and water deficiency is the major factor that limits crop yields. Between 2007 and 2010, we conducted a field experiment on winter wheat to investigate the effects of interval with no-tillage and subsoiling (rotational tillage) after crop harvesting on soil water characteristics and crop yields in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT/ST/NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST/NT/ST); and conventional tillage over years 1–3 (CT). The three-year comparative experiment showed that during the summer fallow, compared with CT, the NT/ST/NT and ST/NT/ST treatments improved mean soil water content at 0–2.0 m depth by 3.9% and 7.8%, respectively, and significantly (P < 0.05) increased mean rainfall storage efficiency by 15.4% and 26.7%. During the wheat growing season, mean soil water content with the NT/ST/NT and ST/NT/ST treatments was significantly higher (P < 0.05) than with the CT treatment (8.0% and 8.6% higher, respectively), and the two rotational tillage treatments significantly (P < 0.05) increased mean rainfall use efficiency compared with CT (by 9.3% and 10.7%, respectively). Yield improvements coupled with greater water-use efficiency occurred with the NT/ST/NT and ST/NT/ST treatments, i.e. mean grain yields were significantly (P < 0.05) increased by 9.6% and 10.7%, respectively, and water-use efficiency was significantly (P < 0.05) improved by 6.7% and 7.8% compared with the CT treatment. The results showed that the interval of no-tillage and subsoiling could improve soil status, and significantly increase crop yields and water-use efficiency. This method could have important applications in the semi-arid areas of north-west China.


2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document