Phylogenetic placement of Echinotheridion (Araneae:Theridiidae) - do male sexual organ removal, emasculation, and sexual cannibalism in Echinotheridion and Tidarren represent evolutionary replicas?

2006 ◽  
Vol 20 (4) ◽  
pp. 415 ◽  
Author(s):  
Ingi Agnarsson

Uniquely among spiders, males of two cobweb spider (Theridiidae) genera, Tidarren Chamberlin & Ivie, 1934 and Echinotheridion Levi, 1963, voluntarily amputate one of their secondary sexual organs (the pedipalpi, modified as sperm transfer organs) before their last molt and thus have only one palp as adults. This is the first step in a fascinating sexual biology observed in both genera, which is marked by sexual dimorphism – males are tiny compared with females – and usually involves both emasculation and sexual cannibalism. To study the evolution of these striking traits it is essential to understand the phylogenetic relationship of these genera. Both morphological and molecular data place Tidarren in the subfamily Theridiinae. However, Echinotheridion has not been placed phylogenetically to date owing to rarity of specimens, and difficulty of interpreting the highly autapomorphic palpal organ, the main source of morphological characters. Here, the phylogenetic position of Echinotheridion is inferred using fragments of three nuclear (Histone 3, 18S rDNA, and 28S rDNA) and two mitochondrial (16S rDNA and COI) loci. Each matrix separately, and a combined matrix, were analysed using parsimony with gaps either treated as missing data, or as 5th state, and with Bayesian methods. Although all genes agree that Tidarren and Echinotheridion are closely related, perhaps surprisingly, none of the analyses supported their sister relationship. The sister relationship was ambiguously supported in a preliminary morphological analysis, whereas combined molecular and morphological data refuted it. This implies a more complex evolutionary history of male sexual organ removal and other bizarre sexual biology of Tidarren and Echinotheridion than previously envisioned. Many of the analyses are equally consistent with two hypotheses: a single origin, followed by a secondary loss; or independent evolution of this behaviour in the two genera. However, based on the combined molecular Bayesian phylogeny, and some of the preliminary ‘total evidence’ analyses, the latter hypothesis is better supported.

2019 ◽  
Author(s):  
Cara Van Der Wal ◽  
Shane T. Ahyong ◽  
Simon Y. W. Ho ◽  
Luana S. F. Lins ◽  
Nathan Lo

The mantis shrimp superfamily Squilloidea, with over 185 described species, is the largest superfamily in the crustacean order Stomatopoda. To date, phylogenetic relationships within this superfamily have been comprehensively analysed using morphological data, with six major generic groupings being recovered. Here, we infer the phylogeny of Squilloidea using a combined dataset comprising 75 somatic morphological characters and four molecular markers. Nodal support is low when the morphological and molecular datasets are analysed separately but improves substantially when combined in a total-evidence phylogenetic analysis. We obtain a well resolved and strongly supported phylogeny that is largely congruent with previous estimates except that the Anchisquilloides-group, rather than the Meiosquilla-group, is the earliest-branching lineage in Squilloidea. The splits among the Anchisquilloides- and Meiosquilla-groups are followed by those of the Clorida-, Harpiosquilla-, Squilla- and Oratosquilla-groups. Most of the generic groups are recovered as monophyletic, with the exception of the Squilla- and Oratosquilla-groups. However, many genera within the Oratosquilla-group are not recovered as monophyletic. Further exploration with more extensive molecular sampling will be needed to resolve relationships within the Oratosquilla-group and to investigate the adaptive radiation of squilloids. Overall, our results demonstrate the merit of combining morphological and molecular datasets for resolving phylogenetic relationships.


Zootaxa ◽  
2004 ◽  
Vol 680 (1) ◽  
pp. 1 ◽  
Author(s):  
ARNE NYGREN

Autolytinae is revised based on available types, and newly collected specimens. Out of 170 nominal species, 18 are considered as incertae sedis, 43 are regarded as junior synonyms, and 25 are referred to as nomina dubia. The relationships of Autolytinae is assessed from 51 morphological characters and 211 states for 76 ingroup-taxa, and 460 molecular characters from mitochondrial 16S rDNA and nuclear 18S rDNA for 31 ingroup-taxa; outgroups include 12 non-autolytine syllid polychaetes. Two analyses are provided, one including morphological data only, and one with combined morphological and molecular data sets. The resulting strict consensus tree from the combined data is chosen for a reclassification. Three main clades are identified: Procerini trib. n., Autolytini Grube, 1850, and Epigamia gen. n. Proceraea Ehlers, 1864 and Myrianida Milne Edwards, 1845 are referred to as nomen protectum, while Scolopendra Slabber, 1781, Podonereis Blainville, 1818, Amytis Savigny, 1822, Polynice Savigny, 1822, and Nereisyllis Blainville, 1828 are considered


2018 ◽  
Vol 32 (1) ◽  
pp. 196 ◽  
Author(s):  
Adnan Shahdadi ◽  
Peter J. F. Davie ◽  
Christoph D. Schubart

Parasesarma semperi (Bürger, 1893) was first described from Bohol in the Philippines and is considered to be widely distributed in Southeast Asia. Parasesarma longicristatum (Campbell, 1967) was originally described as a subspecies of P. semperi from Queensland, Australia, and later recognised as a full species. In this study, we re-examine specimens of the two species from across their entire geographic range using genetic markers, a morphometric analysis, and traditional morphological characters. Previous taxonomic species diagnoses were found to be unreliable, but morphometric principle component analyses consistently separate the two species, with the length to width ratio of the propodus of the fourth pereiopod being of particular importance. Genetic data corresponding to the mitochondrial genes COI, ND1 and 16S confirmed a close sister relationship between the two species, forming reciprocally monophyletic groups. Both species have high haplotype diversities and high intraspecific gene flow.


Phytotaxa ◽  
2016 ◽  
Vol 280 (1) ◽  
pp. 1 ◽  
Author(s):  
ALFREDO VIZZINI ◽  
MIRCA ZOTTI ◽  
MIDO TRAVERSO ◽  
ENRICO ERCOLE ◽  
PIERRE-ARTHUR MOREAU ◽  
...  

Several collections of Amanita species from section Vaginatae have been reported to be strictly associated with Helianthemum plants growing in grasslands, a still largely under-explored ectomycorrhizal habitat. The main aim of this study was to investigate the taxonomic status and phylogenetic position of strictly Helianthemum-associated Amanita sect. Vaginatae taxa, informally named Amanita “helianthemicola”. Collections from Italy, England and France were included in this study. The morphologically closely related species complex A. lividopallescens was also examined. Analyses were carried out based on both morphological and molecular data (phylogenetic analysis of the nrITS sequences). All investigated Amanita collections, which are strictly associated with Helianthemum nummularium, turned out to be conspecific with A. simulans. Amanita simulans was recently described from Sardinia (Italy) from Populus nigra habitats based on morphological characters only. As the holotype of A. simulans was lost, a neotype is designated here based on a voucher from the original collecting area. Amanita simulans is re-described, and an extensive discussion on the morphological variability, host species range, distribution and related taxa is provided. Amanita lividopallescens was confirmed as a good species, and re-delimited based on our phylogenetic analysis; moreover, it was epitypified with a recent and well-documented collection from Corse (France). Amanita stenospora is a synonym of A. lividopallescens, being a colour form of the latter without taxonomic value.


2020 ◽  
Author(s):  
Zachary H. Griebenow

Abstract.Although molecular data have proven indispensable in confidently resolving the phylogeny of many clades across the tree of life, these data may be inaccessible for certain taxa. The resolution of taxonomy in the ant subfamily Leptanillinae is made problematic by the absence of DNA sequence data for leptanilline taxa that are known only from male specimens, including the monotypic genus Phaulomyrma Wheeler & Wheeler. Focusing upon the considerable diversity of undescribed male leptanilline morphospecies, the phylogeny of 35 putative morphospecies sampled from across the Leptanillinae, plus an outgroup, is inferred from 11 nuclear loci and 41 discrete male morphological characters using a Bayesian total-evidence framework, with Phaulomyrma represented by morphological data only. Based upon the results of this analysis Phaulomyrma is synonymized with Leptanilla Emery, and male-based diagnoses for Leptanilla that are grounded in phylogeny are provided, under both broad and narrow circumscriptions of that genus. This demonstrates the potential utility of a total-evidence approach in inferring the phylogeny of rare extant taxa for which molecular data are unavailable and begins a long-overdue systematic revision of the Leptanillinae that is focused on male material.


2021 ◽  
Author(s):  
Robin M. D. Beck ◽  
Robert Voss ◽  
Sharon Jansa

The current literature on marsupial phylogenetics includes numerous studies based on analyses of morphological data with relatively limited sampling of Recent and fossil taxa, and many studies based on analyses of molecular data that include a dense sampling of Recent taxa, but relatively few that combine both data types. Another dichotomy in the marsupial phylogenetic literature is between studies that focus on New World taxa, others that focus on Sahulian taxa. To date, there has been no attempt to assess the phylogenetic relationships of the global marsupial fauna, based on combined analyses of morphology and molecular sequences, for a dense sampling of Recent and fossil taxa. For this report, we compiled morphological and molecular data from an unprecedented number of Recent and fossil marsupials. Our morphological data consist of 180 craniodental characters that we scored for 97 species representing every currently recognized Recent genus, 42 additional ingroup (crown-clade marsupial) taxa represented by well-preserved fossils, and 5 outgroups (non-marsupial metatherians). Our molecular data comprise 24.5 kb of DNA sequences from whole-mitochondrial genomes and six nuclear loci (APOB, BRCA1, GHR, RAG1, RBP3 and VWF) for 97 marsupial terminals (the same Recent taxa scored for craniodental morphology) and several placental and monotreme outgroups. The results of separate and combined analyses of these data using a wide range of phylogenetic methods support many currently accepted hypotheses of ingroup (marsupial) relationships, but they also underscore the difficulty of placing fossils with key missing data (e.g., †Evolestes), and the unique difficulty of placing others that exhibit mosaics of plesiomorphic and autapomorphic traits (e.g., †Yalkaparidon). Unique contributions of our study are (1) critical discussions and illustrations of marsupial craniodental morphology, including descriptions and illustrations of some features never previously coded for phylogenetic analysis; (2) critical assessments of relative support for many suprageneric clades; (3) estimates of divergence times derived from tip-and-node dating based on uniquely taxon-dense analyses; and (4) a revised, higher-order classification of marsupials accompanied by lists of supporting craniodental synapomorphies. Far from the last word on these topics, this report lays the foundation for future research that may be enabled by the discovery of new fossil taxa, better-preserved material of previously described taxa, novel morphological characters, and improved methods of phylogenetic analysis.


2021 ◽  
Author(s):  
E. J. Thompson ◽  
Melodina Fabillo

The taxonomy of Neurachninane has been unstable, with its member genera consisting of Ancistrachne, Calyptochloa, Cleistochloa, Dimorphochloa, Neurachne, Paraneurachne and Thyridolepis, changing since its original circumscription that comprised only the latter three genera. Recent studies on the phylogeny of Neurachninae have focused primarily on molecular data. We analysed the phylogeny of Neurachninae on the basis of molecular data from seven molecular loci (plastid markers: matK, ndhF, rbcL, rpl16, rpoC2 and trnLF, and ribosomal internal transcribed spacer, ITS) and morphological data from 104 morphological characters, including new taxonomically informative micromorphology of upper paleas. We devised an impact assessment scoring (IAS) protocol to aid selection of a tree for inferring the phylogeny of Neurachninae. Combining morphological and molecular data resulted in a well resolved phylogeny with the highest IAS value. Our findings support reinstatement of subtribe Neurachninae in its original sense, Neurachne muelleri and Dimorphochloa rigida. We show that Ancistrachne, Cleistochloa and Dimorphochloa are not monophyletic and Ancistrachne maidenii, Calyptochloa, Cleistochloa and Dimorphochloa form a new group, the cleistogamy group, united by having unique morphology associated with reproductive dimorphism.


Phytotaxa ◽  
2021 ◽  
Vol 478 (2) ◽  
pp. 179-200
Author(s):  
SHABIR A. RATHER ◽  
WANG SHU ◽  
MAYANK DHAR DWIVEDI ◽  
CHANG ZHAOYANG

In this study, we explored the evolutionary history and taxonomic treatment of the Caragana opulens complex taking information from morphological and molecular data. The complex consists of three species, C. opulens, C. licentiana and C. kansuensis. Moreover, the morphological characters currently used to differentiate the species present in the complex have been found insignificant and inconsistent and do not help diagnose the species. For the present study, we investigated its range and sampled 139 accessions from the different populations of the genus Caragana and 17 accessions of the complex. DNA sequence data from one nrDNA ITS and one cpDNA trnH-psbA loci were sequenced and analyzed using Maximum Likelihood and Bayesian methods. The resulting phylogenies were congruent in topologies. Based on morphological and molecular data, it is concluded that all three species of the complex are one of the same with significant morphological variations. Hence C. opulens is accepted as the correct name along with C. licentiana and C. kansuensis as synonyms.


2005 ◽  
Vol 272 (1572) ◽  
pp. 1577-1586 ◽  
Author(s):  
Niklas Wahlberg ◽  
Michael F Braby ◽  
Andrew V.Z Brower ◽  
Rienk de Jong ◽  
Ming-Min Lee ◽  
...  

Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions ( COI , EF-1α and wingless ). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1α data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jose Barba-Montoya ◽  
Qiqing Tao ◽  
Sudhir Kumar

Abstract Background Matrices of morphological characters are frequently used for dating species divergence times in systematics. In some studies, morphological and molecular character data from living taxa are combined, whereas others use morphological characters from extinct taxa as well. We investigated whether morphological data produce time estimates that are concordant with molecular data. If true, it will justify the use of morphological characters alongside molecular data in divergence time inference. Results We systematically analyzed three empirical datasets from different species groups to test the concordance of species divergence dates inferred using molecular and discrete morphological data from extant taxa as test cases. We found a high correlation between their divergence time estimates, despite a poor linear relationship between branch lengths for morphological and molecular data mapped onto the same phylogeny. This was because node-to-tip distances showed a much higher correlation than branch lengths due to an averaging effect over multiple branches. We found that nodes with a large number of taxa often benefit from such averaging. However, considerable discordance between time estimates from molecules and morphology may still occur as  some intermediate nodes may show large time differences between these two types of data. Conclusions Our findings suggest that node- and tip-calibration approaches may be better suited for nodes with many taxa. Nevertheless, we highlight the importance of evaluating the concordance of intrinsic time structure in morphological and molecular data before any dating analysis using combined datasets.


Sign in / Sign up

Export Citation Format

Share Document