Carbon sources for aquatic food webs of riverine and lacustrine tropical waterholes with variable groundwater influence

2017 ◽  
Vol 68 (3) ◽  
pp. 442 ◽  
Author(s):  
N. E. Pettit ◽  
D. M. Warfe ◽  
P. G. Close ◽  
B. J. Pusey ◽  
R. Dobbs ◽  
...  

Food web studies integrate ecological information and provide understanding of ecosystem function. Aquatic ecosystems of the Kimberley region (north-western Australia) have high conservation significance as hotspots for maintaining local and regional biodiversity. This study investigated the influence of waterhole type and persistence on the strength of consumer reliance on local energy resources for aquatic food webs. Changes in water isotopic composition indicated groundwater inputs were enough to overcome evaporative losses in some waterholes. Other waterholes had varying levels of isotope enrichment suggesting insufficient groundwater input to ‘compensate’ for evaporative loss. C and N isotope analysis indicated considerable overlap among energy sources in waterholes between macrophytes and periphyton but gradient analysis indicated that periphyton is a major carbon source for aquatic consumers. Groundwater-fed waterholes appeared to have higher quality food sources (indicated by lower C:N ratios), but there was minimal evidence that direct groundwater contributions were related to food web processes. Nonetheless, in a region where groundwater is influential in maintaining aquatic habitats, future development of groundwater reserves will likely affect the ecological and cultural value of freshwater wetlands by either reducing their permanence or size or indirectly through possible alteration to the role of periphyton in supporting the food web.

2009 ◽  
Vol 44 (4) ◽  
pp. 313-322 ◽  
Author(s):  
Monalisa Elshayeb ◽  
Michael D. MacKinnon ◽  
D. George Dixon ◽  
Michael Power

Abstract One strategy for reclamation of oil sands leases in northern Alberta is the construction of lakes and wetlands by capping oil sands process-affected material (OSPM) with water. To assess this approach, experimental sites containing a range of OSPM have been constructed to monitor the evolution of the resulting aquatic habitats. Stable isotopes of carbon and nitrogen were used to assess the effects of OSPM on aquatic food webs. Carbon and nitrogen isotopic signatures of sediment, dissolved inorganic and organic carbon, particulate organic matter, periphyton, plants, plankton, aquatic invertebrates, and fish were used to assess differences related to the naphthenic acid (NA) concentration in OSPM and reference sites. NAs are a principal contaminant of concern in OSPM. Sites were grouped into low (0 to 4 mg/L), medium (4 to 15 mg/L), and high (>15 mg/L) NA concentrations. There were no significant differences in food web area or length among the three NA groupings. In most cases, carbon isotope analyses of samples from low, medium, and high NA concentration sites were not significantly different, suggesting that OSPM is not a significant contributor to food web carbon sources. Significant differences were found in nitrogen isotope signatures between low, medium, and high NA sites. Ammonia from OSPM is suggested as the main contributor to δ15N enrichment.


2010 ◽  
Vol 8 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Manuel Mendoza-Carranza ◽  
David J Hoeinghaus ◽  
Alexandre M Garcia ◽  
Ángel Romero-Rodriguez

Mangrove and seagrass habitats are important components of tropical coastal zones worldwide, and are conspicuous habitats of Centla Wetland Biosphere Reserve (CWBR) in Tabasco, Mexico. In this study, we examine food webs in mangrove- and seagrass-dominated habitats of CWBR using stable isotope ratios of carbon and nitrogen. Our objective was to identify the importance of carbon derived from mangroves and seagrasses to secondary production of aquatic consumers in this poorly studied conservation area. Carbon and nitrogen isotope ratios of basal sources and aquatic consumers indicated that the species-rich food webs of both habitats are dependent on riparian production sources. The abundant Red mangrove Rhizophora mangle appears to be a primary source of carbon for the mangrove creek food web. Even though dense seagrass beds were ubiquitous, most consumers in the lagoon food web appeared to rely on carbon derived from riparian vegetation (e.g. Phragmites australis). The introduced Amazon sailfin catfish Pterygoplichthys pardalis had isotope signatures overlapping with native species (including high-value fisheries species), suggesting potential competition for resources. Future research should examine the role played by terrestrial insects in linking riparian and aquatic food webs, and impacts of the expanding P. pardalis population on ecosystem function and fisheries in CWBR. Our findings can be used as a baseline to reinforce the conservation and management of this important reserve in the face of diverse external and internal human impacts.


2020 ◽  
Author(s):  
Marc Jürgen Silberberger ◽  
Katarzyna Koziorowska-Makuch ◽  
Karol Kuliński ◽  
Monika Kędra

Abstract. Stable isotope analysis has become one of the most widely used techniques in ecology. However, uncertainties about the effects of sample preservation and pre-treatment on the ecological interpretation of stable isotope data and especially on Bayesian stable isotope mixing models remain. Here, Bayesian mixing models were used to study how three different preservation methods (drying, freezing, formalin) and two pre-treatments (acidification, lipid removal) affect the estimation of diet composition for two benthic invertebrate species (Limecola balthica, Crangon crangon). Furthermore, commonly used mathematical lipid normalization and formalin correction were applied to check if they improve the model results. Preservation effects were strong on model outcomes for frozen as well as formalin preserved L. balthica samples, but not for C. crangon. Pre-treatment effects varied with species and preservation method and neither lipid normalization nor mathematical formalin correction consistently resulted in improved model outcomes. Our analysis highlights that particularly small changes in δ15N introduced by different preservation and pre-treatments display a so far unrecognized source of error in stable isotope studies. We conclude that mathematical correction of stable isotopes data should be avoided for Bayesian mixing models and that previously unaddressed effects of sample preservation (especially those arising from preservation by freezing) have potentially biased our understanding of the utilization of organic matter in aquatic food webs.


Radiocarbon ◽  
2015 ◽  
Vol 57 (3) ◽  
pp. 425-438 ◽  
Author(s):  
Evelyn M Keaveney ◽  
Paula J Reimer ◽  
Robert H Foy

Carbon (C) and nitrogen (N) stable isotope analysis (SIA) has been used to identify the terrestrial subsidy of freshwater food webs. However, SIA fails to differentiate between the contributions of old and recently fixed terrestrial C and consequently cannot fully determine the source, age, and biochemical quality of terrestrial carbon. Natural abundance radiocarbon (Δ14C) was used to examine the age and origin of carbon in Lower Lough Erne, Northern Ireland. 14C and stable isotope values were obtained from invertebrate, algae, and fish samples, and the results indicate that terrestrial organic C is evident at all trophic levels. High winter δ15N values in calanoid zooplankton (δ15N = 24‰) relative to phytoplankton and particulate organic matter (δ15N = 6‰ and 12‰, respectively) may reflect several microbial trophic levels between terrestrial C and calanoid invertebrates. Winter and summer calanoid Δ14C values show a seasonal switch between autochthonous and terrestrial carbon sources. Fish Δ14C values indicate terrestrial support at the highest trophic levels in littoral and pelagic food webs. 14C therefore is useful in attributing the source of carbon in freshwater in addition to tracing the pathway of terrestrial carbon through the food web.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2371
Author(s):  
Yanfu Que ◽  
Jiayi Xie ◽  
Jun Xu ◽  
Weitao Li ◽  
Ezhou Wang ◽  
...  

Seasonal water-level fluctuations may lead to changes in river nutrients, which causes corresponding changes in the trophic structure of an aquatic food web, and finally affects the whole ecosystem. In this study, we focused on the Ganjing River, a tributary of the Yangtze River, China. Common organisms were sampled and measured for carbon and nitrogen stable isotopes in the wet and dry seasons, respectively, and the relative contributions of different food sources were combined to construct the food web, so as to realize the influence of water-level fluctuation on aquatic food web. Our results showed that basal food sources for fish consumers were endogenous carbon sources such as POM, zooplankton and zoobenthos in the dry season, while high water level exposed fish to more diverse and abundant food sources, and the contribution proportions of exogenous carbon sources (e.g., terrestrial detritus) to consumers increased in the wet season. In parallel, the abundance and species diversity of fish were higher than those in the dry season. Most fish species had relatively higher trophic levels in the dry season compared to the wet season, because the increase in fish densities led to an increase in piscivores fish. The food web was composed of planktonic and benthic food chains in the dry season. During the wet season, the planktonic food chain was dominant, followed by the herbivorous food chain, and the benthic food chain was relatively less important. Therefore, water-level fluctuation may alter the trophic linkages within fish communities, which contributed to a more complex and interconnected food web. Moreover, as we expect, the stable isotope analysis food web was broadly in line with the gut content analysis food web.


2008 ◽  
Vol 20 (1) ◽  
pp. 13-20
Author(s):  
ZENG Qingfei ◽  
◽  
KONG Fanxiang ◽  
ZHANG Enlou ◽  
QIAN Shanqin

2014 ◽  
Vol 11 (8) ◽  
pp. 2357-2371 ◽  
Author(s):  
J. J. Middelburg

Abstract. Stable isotopes have been used extensively to study food-web functioning, that is, the flow of energy and matter among organisms. Traditional food-web studies are based on the natural variability of isotopes and are limited to larger organisms that can be physically separated from their environment. Recent developments allow isotope ratio measurements of microbes and this in turn allows the measurement of entire food webs, in other words, from small producers at the bottom to large consumers at the top. Here, I provide a concise review on the use and potential of stable isotopes to reconstruct end-to-end food webs. I will first discuss food web reconstruction based on natural abundances isotope data and will then show that the use of stable isotopes as deliberately added tracers provides complementary information. Finally, challenges and opportunities for end-to-end food web reconstructions in a changing world are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pianpian Wu ◽  
Martin J. Kainz ◽  
Fernando Valdés ◽  
Siwen Zheng ◽  
Katharina Winter ◽  
...  

AbstractClimate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 μm) and larger sized plankton (microplankton; 40–200 μm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels.


Sign in / Sign up

Export Citation Format

Share Document