Effects of golden perch (Macquaria ambigua (Richardson)) larvae, fry and fingerlings on zooplankton communities in larval-rearing ponds: An enclosure study

1996 ◽  
Vol 47 (6) ◽  
pp. 837 ◽  
Author(s):  
PT Arumugam ◽  
MC Geddes

In the absence of fish, the plankton community in enclosures in a larval-rearing pond showed a marked successional pattern from rotifers and Moina to copepod and then Daphnia-calanoid dominance. The impact of growing larvae and fry, with densities of 40-118 m-2 at harvest, on zooplankton was conspicuous only after Day 22 when Daphnia became rare and calanoid numbers were suppressed. Predation by fry caused reductions in the size of Moina, cyclopoids and calanoids found. An increase in Daphnia size, 'gigantism', occurred because of limitations in the mouth gape of the fry. Low densities of fingerlings (0.65 g wet weight and stocked at 1 and 2 m-2) had little effect on zooplankton succession, whereas high density (15 fingerlings m-2) caused a shift to a zooplankton community dominated by small cladocerans, rotifers and cyclopoids. High fingerling density also caused a reduction in the size of the microcrustaceans found. The size and density of fish determined their impact on zooplankton composition and succession, demonstrating that similar starting times and consistency in fish density are necessary in obtaining 'sensible' statistical inferences in field fish-zooplankton experiments.

2019 ◽  
Vol 31 ◽  
Author(s):  
Lúcia Helena Sipaúba-Tavares ◽  
Rodrigo Ney Millan ◽  
Érica Camargo Oliveira Capitano ◽  
Bruno Scardoelli-Truzzi

Abstract Aim Limnological conditions, phytoplankton and zooplankton communities in a fishpond highly affected by management during the dry and rainy seasons are investigated. Methods Water samples were analyzed for physicochemical parameters; soil samples were analyzed for macro- and micro-nutrients, phytoplankton and zooplankton communities, at four sites, during eight months in the rainy and dry seasons. Distance-based linear model (DISTLM) was applied with Akaike Information Criterion (AIC), where the influence of environmental variables in the variation of phytoplankton and zooplankton composition could be assessed and the best model could be selected. Results The multiparameter test revealed that variables pH, TSS and TP better explain the composition of the biotic community (AICc = 45.6; R2 = 0.80). Chlorophyceae was the dominant group with 32 taxa, or rather, 75-85% of total phytoplankton, with high density at 2,365-4,180 ind.L-1 during the sampling period. Rotifera was the most abundant group in the zooplankton community during the two seasons, except at IW2 during the dry season, when Copepoda had a higher density, namely, 52% of total zooplankton community at this site. Conclusions The contribution of allochthonous material to the fishpond during the two seasons mainly consists of macro- and micro-nutrients and thermotolerant coliforms that influenced the plankton community and enhanced high Cyanobacteria density in the rainy season. Plankton community in the studied pond was characteristic of small water bodies. Management protocol in places with continuous water flow according to the region may be an important tool to optimize and to avoid risks in fish production.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 706 ◽  
Author(s):  
Maciej Karpowicz ◽  
Jolanta Ejsmont-Karabin ◽  
Joanna Kozłowska ◽  
Irina Feniova ◽  
Andrew R. Dzialowski

Recent changes in climate and eutrophication have caused increases in oxygen depletion in both freshwater and marine ecosystems. However, the impact of oxygen stress on zooplankton, which is the major trophic link between primary producers and fish, remains largely unknown in lakes. Therefore, we studied 41 lakes with different trophic and oxygen conditions to assess the role of oxygen stress on zooplankton communities and carbon transfer between phytoplankton and zooplankton. Samples were collected from each lake at the peak of summer stratification from three depth layers (the epilimnion, metalimnion, and hypolimnion). Our results revealed that freshwater zooplankton were relatively tolerant to anoxic conditions and the greatest changes in community structure were found in lakes with the highest oxygen deficits. This caused a switch in dominance from large to small species and reduced the zooplankton biomass in lower, anoxic layers of water, but not in the upper layers of water where the oxygen deficits began. This upper anoxic layer could thus be a very important refuge for zooplankton to avoid predation during the day. However, the reduction of zooplankton in the lower water layers was the main factor that reduced the effectiveness of carbon transfer between the phytoplankton and zooplankton.


1985 ◽  
Vol 42 (1) ◽  
pp. 77-85 ◽  
Author(s):  
N. K. Kaushik ◽  
G. L. Stephenson ◽  
K. R. Solomon ◽  
K. E. Day

A series of in situ aquatic enclosures or limnocorrals (5 × 5 × 5 m deep) was used to evaluate the impact of the insecticide permethrin (3-phenoxybenzy[(1RS)-cis,trans-3-(2,2-dimethyl-3-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate) (50.0 and 5.0 μg∙L−1 in 1979 and 5.0 and 0.5 μg∙L−1 in 1980) on the pelagic zooplankton community in a 10-ha mesotrophic lake in southern Ontario. Permethrin was acutely toxic to the macrozooplankton (Cladocera and Copepoda) at all concentrations; microzooplankton (Rotifera) showed acute toxicity only at 50.0 μg∙L−1. Despite this initial toxicity, the density of microzooplankton increased dramatically 15–20 d post-treatment in all treated enclosures, and the rotifer populations dominated the zooplankton community for 3–4 wk. The high densities of microzooplankton were attributed to their inherent reproductive capabilities when released from competition and predation pressures. Resilience of the different zooplankton taxa was variable and depended upon both the species and the exposure concentration. Diversity of zooplankton was significantly reduced in communities exposed to permethrin. The limnocorral technique has proved to be an important tool for assessment of direct and indirect impacts of pesticides on and probable recovery of a zooplankton community under natural conditions.


2005 ◽  
Vol 62 (11) ◽  
pp. 2450-2462 ◽  
Author(s):  
Angela L Strecker ◽  
Shelley E Arnott

Invasive species introductions into freshwater ecosystems have had a multitude of effects on aquatic communities. Few studies, however, have directly compared the impact of an invader on communities with contrasting structure. Historically high levels and subsequent reductions of acid deposition have produced landscapes of lakes of varying acidity and zooplankton community structure. We conducted a 30-day enclosure experiment in Killarney Provincial Park, Ontario, Canada, to test the effects of Bythotrephes longimanus, an invasive invertebrate predator, on two contrasting zooplankton communities at different stages of recovery from acidification: recovered and acid damaged. Bythotrephes significantly decreased zooplankton biomass and abundance in both communities but had a greater negative effect on the abundance of zooplankton in the recovered community. Bythotrephes reduced species diversity of the recovered zooplankton community but not of the acid-damaged community. Species richness of both community types was unaffected by Bythotrephes predation. The effect of Bythotrephes on small cladocerans, a preferred prey type, differed between the community types and appeared to be related to density-dependent predation by Bythotrephes. Both community- and species-level results suggest that recovered and acid-damaged zooplankton assemblages may be negatively affected by an invasion of Bythotrephes but that the specific response is dependent on the original community structure.


Author(s):  
Natalia Kuczyńska-Kippen ◽  
Barbara Nagengast ◽  
Tomasz Joniak

The impact of biometric parameters of a hydromacrophyte habitat on the structure of zooplankton communities in various types of small water bodies


2017 ◽  
Vol 727 ◽  
pp. 447-449 ◽  
Author(s):  
Jun Dai ◽  
Hua Yan ◽  
Jian Jian Yang ◽  
Jun Jun Guo

To evaluate the aging behavior of high density polyethylene (HDPE) under an artificial accelerated environment, principal component analysis (PCA) was used to establish a non-dimensional expression Z from a data set of multiple degradation parameters of HDPE. In this study, HDPE samples were exposed to the accelerated thermal oxidative environment for different time intervals up to 64 days. The results showed that the combined evaluating parameter Z was characterized by three-stage changes. The combined evaluating parameter Z increased quickly in the first 16 days of exposure and then leveled off. After 40 days, it began to increase again. Among the 10 degradation parameters, branching degree, carbonyl index and hydroxyl index are strongly associated. The tensile modulus is highly correlated with the impact strength. The tensile strength, tensile modulus and impact strength are negatively correlated with the crystallinity.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nwamaka Oluchukwu Akpodiete ◽  
Frédéric Tripet

Abstract Background Malaria vector control approaches that rely on mosquito releases such as the sterile insect technique (SIT) and suppression or replacement strategies relying on genetically modified mosquitoes (GMM) depend on effective mass production of Anopheles mosquitoes. Anophelines typically require relatively clean larval rearing water, and water management techniques that minimise toxic ammonia are key to achieving optimal rearing conditions in small and large rearing facilities. Zeolites are extensively used in closed-system fish aquaculture to improve water quality and reduce water consumption, thanks to their selective adsorption of ammonia and toxic heavy metals. The many advantages of zeolites include low cost, abundance in many parts of the world and environmental friendliness. However, so far, their potential benefit for mosquito rearing has not been evaluated. Methods This study evaluated the independent effects of zeolite and daily water changes (to simulate a continuous flow system) on the rearing of An. coluzzii under two feed regimes (powder and slurry feed) and larval densities (200 and 400 larvae per tray). The duration of larval development, adult emergence success and phenotypic quality (body size) were recorded to assess the impact of water treatments on mosquito numbers, phenotypic quality and identification of optimal feeding regimes and larval density for the use of zeolite. Results Overall, mosquito emergence, duration of development and adult phenotypic quality were significantly better in treatments with daily water changes. In treatments without daily water changes, zeolite significantly improved water quality at the lower larval rearing density, resulting in higher mosquito emergence and shorter development time. At the lower larval rearing density, the adult phenotypic quality did not significantly differ between zeolite treatment without water changes and those with daily changes. Conclusions These results suggest that treating rearing water with zeolite can improve mosquito production in smaller facilities. Zeolite could also offer cost-effective and environmentally friendly solutions for water recycling management systems in larger production facilities. Further studies are needed to optimise and assess the costs and benefits of such applications to Anopheles gambiae (s.l.) mosquito-rearing programmes. Graphic abstract


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 764
Author(s):  
Arianna Strazzella ◽  
Alice Ossoli ◽  
Laura Calabresi

Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.


2004 ◽  
Vol 61 (11) ◽  
pp. 2111-2125 ◽  
Author(s):  
Richard P Barbiero ◽  
Marc L Tuchman

The crustacean zooplankton communities in Lakes Michigan and Huron and the central and eastern basins of Lake Erie have shown substantial, persistent changes since the invasion of the predatory cladoceran Bythotrephes in the mid-1980s. A number of cladoceran species have declined dramatically since the invasion, including Eubosmina coregoni, Holopedium gibberum, Daphnia retrocurva, Daphnia pulicaria, and Leptodora kindti, and overall species richness has decreased as a result. Copepods have been relatively unaffected, with the notable exception of Meso cyclops edax, which has virtually disappeared from the lakes. These species shifts have for the most part been consistent and equally pronounced across all three lakes. Responses of crustacean species to the Bythotrephes invasion do not appear to be solely a consequence of size, and it is likely that other factors, e.g., morphology, vertical distribution, or escape responses, are important determinants of vulnerability to predation. Our results indicate that invertebrate predators in general, and invasive ones in particular, can have pronounced, lasting effects on zooplankton community structure.


Author(s):  
Todd J. Callantine ◽  
Christopher Cabrall ◽  
Michael Kupfer ◽  
Lynne Martin ◽  
Joey Mercer ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document