Regulation of Synthesis and Secretion of Fucose-containing Polysaccharides in Cultured Sycamore Cells

1978 ◽  
Vol 5 (4) ◽  
pp. 457
Author(s):  
R.E Paull ◽  
R.L Jones

Regulation of the synthesis and secretion of sycamore extracellular polysaccharides (SEPS) was studied in cultured cells of Acer pseudoplatanus L. cv. Pope by monitoring the incorporation of L-[3H]fucose, a specific marker for the polysaccharide, into cell wall, soluble intracellular polysaccharide and secreted fractions. Actively growing cultures of sycamore cells produce SEPS, and it reaches a concentration in the incubation medium of up to 0.7 mg ml-� after 25 days of growth. Addition of SEPS at 10 mg ml-� to cells during the phase of active growth causes a marked and rapid inhibition of secretion of the polysaccharide into which [3H]fucose is incorporated without markedly affecting uptake of the label. Added SEPS also inhibits the incorporation of [3H]fucose into the homogenate fraction although this inhibition is less marked and requires higher concentrations of added SEPS. This inhibitory effect of SEPS can be mimicked by other charged polymers, for example polygalacturonic acid, polylysine and polyglycine, while uncharged polymers like polyethylene glycol and dextran are without effect. Furthermore, the incorporation of [3H]fucose into secreted polysaccharides of isolated protoplasts is relatively unaffected by added SEPS. We propose that SEPS and other charged polymers interact with the cell wall causing it to become impermeable to synthesized SEPS, which then accumulates between the plasmalemma and the cell wall and eventually inhibits polysaccharide synthesis.


Author(s):  
K.S. Walters ◽  
R.D. Sjolund ◽  
K.C. Moore

Callose, B-1,3-glucan, a component of cell walls, is associated with phloem sieve plates, plasmodesmata, and other cell wall structures that are formed in response to wounding or infection. Callose reacts with aniline blue to form a fluorescent complex that can be recognized in the light microscope with ultraviolet illumination. We have identified callose in cell wall protuberances that are formed spontaneously in suspension-cultured cells of S. tortuosus and in the tips of root hairs formed in sterile callus cultures of S. tortuosus. Callose deposits in root hairs are restricted to root hair tips which appear to be damaged or deformed, while normal root hair tips lack callose deposits. The callose deposits found in suspension culture cells are restricted to regions where unusual outgrowths or protuberances are formed on the cell surfaces, specifically regions that are the sites of new cell wall formation.Callose formation has been shown to be regulated by intracellular calcium levels.



2020 ◽  
Author(s):  
Ian Sims ◽  
K Middleton ◽  
AG Lane ◽  
AJ Cairns ◽  
A Bacic

Microscopic examination of suspension-cultured cells of Phleum pratense L., Panicum miliaceum L., Phalaris aquatica L. and Oryza sativa L. showed that they were comprised of numerous root primordia. Polysaccharides secreted by these suspension cultures contained glycosyl linkages consistent with the presence of high proportions of root mucilage-like polysaccharides. In contrast, suspension-cultured cells of Hordeum vulgare L. contained mostly undifferentiated cells more typical of plant cells in suspension culture. The polysaccharides secreted by H. vulgare cultures contained mostly linkages consistent with the presence of glucuronoarabinoxylan. The soluble polymers secreted by cell-suspension cultures of Phleum pratense contained 70% carbohydrate, 14% protein and 6% inorganic material. The extracellular polysaccharides were separated into four fractions by anion-exchange chromatography using a gradient of imidazole-HCl at pH 7.0. From glycosyl-linkage analyses, five polysaccharides were identified: an arabinosylated xyloglucan (comprising 20% of the total polysaccharide), a glucomannan (6%), a type-II arabinogalactan (an arabinogalactan-protein; 7%), an acidic xylan (3%), and a root-slime-like polysaccharide, which contained features of type-II arabinogalactans and glucuronomannans (65%).



2020 ◽  
Author(s):  
Ian Sims ◽  
K Middleton ◽  
AG Lane ◽  
AJ Cairns ◽  
A Bacic

Microscopic examination of suspension-cultured cells of Phleum pratense L., Panicum miliaceum L., Phalaris aquatica L. and Oryza sativa L. showed that they were comprised of numerous root primordia. Polysaccharides secreted by these suspension cultures contained glycosyl linkages consistent with the presence of high proportions of root mucilage-like polysaccharides. In contrast, suspension-cultured cells of Hordeum vulgare L. contained mostly undifferentiated cells more typical of plant cells in suspension culture. The polysaccharides secreted by H. vulgare cultures contained mostly linkages consistent with the presence of glucuronoarabinoxylan. The soluble polymers secreted by cell-suspension cultures of Phleum pratense contained 70% carbohydrate, 14% protein and 6% inorganic material. The extracellular polysaccharides were separated into four fractions by anion-exchange chromatography using a gradient of imidazole-HCl at pH 7.0. From glycosyl-linkage analyses, five polysaccharides were identified: an arabinosylated xyloglucan (comprising 20% of the total polysaccharide), a glucomannan (6%), a type-II arabinogalactan (an arabinogalactan-protein; 7%), an acidic xylan (3%), and a root-slime-like polysaccharide, which contained features of type-II arabinogalactans and glucuronomannans (65%).



Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2116
Author(s):  
Xiaoyong Wang ◽  
Lijuan Zhang ◽  
Qi Dai ◽  
Hongzong Si ◽  
Longyun Zhang ◽  
...  

The high concentrations of individual phytochemicals in vitro studies cannot be physiologically achieved in humans. Our solution for this concentration gap between in vitro and human studies is to combine two or more phytochemicals. We screened 12 phytochemicals by pairwise combining two compounds at a low level to select combinations exerting the synergistic inhibitory effect of breast cancer cell proliferation. A novel combination of luteolin at 30 μM (LUT30) and indole-3-carbinol 40 μM (I3C40) identified that this combination (L30I40) synergistically constrains ERα+ breast cancer cell (MCF7 and T47D) proliferation only, but not triple-negative breast cancer cells. At the same time, the individual LUT30 and I3C40 do not have this anti-proliferative effect in ERα+ breast cancer cells. Moreover, this combination L30I40 does not have toxicity on endothelial cells compared to the current commercial drugs. Similarly, the combination of LUT and I3C (LUT10 mg + I3C10 mg/kg/day) (IP injection) synergistically suppresses tumor growth in MCF7 cells-derived xenograft mice, but the individual LUT (10 mg/kg/day) and I3C (20 mg/kg/day) do not show an inhibitory effect. This combination synergistically downregulates two major therapeutic targets ERα and cyclin dependent kinase (CDK) 4/6/retinoblastoma (Rb) pathway, both in cultured cells and xenograft tumors. These results provide a solid foundation that a combination of LUT and I3C may be a practical approach to treat ERα+ breast cancer cells after clinical trials.



Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 182 ◽  
Author(s):  
Massimo Malerba ◽  
Raffaella Cerana

Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO−) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO− scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO− in the FC-induced responses. In particular, ONOO− seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria.



2005 ◽  
Vol 391 (2) ◽  
pp. 409-415 ◽  
Author(s):  
Anna Kärkönen ◽  
Alain Murigneux ◽  
Jean-Pierre Martinant ◽  
Elodie Pepey ◽  
Christophe Tatout ◽  
...  

UDPGDH (UDP-D-glucose dehydrogenase) oxidizes UDP-Glc (UDP-D-glucose) to UDP-GlcA (UDP-D-glucuronate), the precursor of UDP-D-xylose and UDP-L-arabinose, major cell wall polysaccharide precursors. Maize (Zea mays L.) has at least two putative UDPGDH genes (A and B), according to sequence similarity to a soya bean UDPGDH gene. The predicted maize amino acid sequences have 95% similarity to that of soya bean. Maize mutants with a Mu-element insertion in UDPGDH-A or UDPGDH-B were isolated (udpgdh-A1 and udpgdh-B1 respectively) and studied for changes in wall polysaccharide biosynthesis. The udpgdh-A1 and udpgdh-B1 homozygotes showed no visible phenotype but exhibited 90 and 60–70% less UDPGDH activity respectively than wild-types in a radiochemical assay with 30 μM UDP-glucose. Ethanol dehydrogenase (ADH) activity varied independently of UDPGDH activity, supporting the hypothesis that ADH and UDPGDH activities are due to different enzymes in maize. When extracts from wild-types and udpgdh-A1 homozygotes were assayed with increasing concentrations of UDP-Glc, at least two isoforms of UDPGDH were detected, having Km values of approx. 380 and 950 μM for UDP-Glc. Leaf and stem non-cellulosic polysaccharides had lower Ara/Gal and Xyl/Gal ratios in udpgdh-A1 homozygotes than in wild-types, whereas udpgdh-B1 homozygotes exhibited more variability among individual plants, suggesting that UDPGDH-A activity has a more important role than UDPGDH-B in UDP-GlcA synthesis. The fact that mutation of a UDPGDH gene interferes with polysaccharide synthesis suggests a greater importance for the sugar nucleotide oxidation pathway than for the myo-inositol pathway in UDP-GlcA biosynthesis during post-germinative growth of maize.



1970 ◽  
Vol 1 (1) ◽  
pp. 51-55
Author(s):  
Louis H. Muschel ◽  
Linda J. Larsen

This study was performed to determine the mechanism whereby hypertonic sucrose inhibits the immune bactericidal reaction. Other investigators had postulated that the initial attack of complement (C) on the cell wall was followed with lysozyme-containing whole serum by an enzymatic reaction upon the peptidoglycan substrate resulting in cell death. In the absence of serum lysozyme, secondary lethal changes might occur from damage to the cell's inner membrane as a result of osmotic forces in the presence of a defective cell wall. Hypertonic sucrose giving rise to plasmolysis and protection of the inner membrane was presumed to differentially inhibit the immune response mediated by lysozyme-free serum. The experimental results observed in this investigation have indicated, however, that the inhibitory effect of sucrose upon the bactericidal reaction may be explained simply by its anticomplementary effect and not by any effect on the bacterial cell. This view was supported by the following observations: (i) the comparability of the inhibitory effect of sucrose upon the immune hemolytic and bactericidal reactions, (ii) the comparable percentage loss in bactericidal activity of whole serum and lysozyme-free serum resulting from hypertonic sucrose, (iii) bactericidal antibody titrations were relatively unaffected and C titrations markedly inhibited by sucrose, (iv) the inhibitory effect of sucrose on the bactericidal reaction was unaffected by prior growth of the organism in the presence of sucrose, (v) the kinetics of the bactericidal reactivity of lysozyme-free serum in hypertonic sucrose, compared with whole serum, did not reveal a prolonged lag phase with lysozyme-free serum, but simply diminished reactivity at all times. These observations are compatible with the view that the C attack upon the outer surface of gram-negative bacteria, which plays a part in the cell's permeability control, may account for cell death. In this regard, the immune bactericidal reaction is quite comparable to the lysis of red cells or nucleated cells by C despite the lack of overt lysis in bacteria, probably because of their underlying supporting structures.





2014 ◽  
Vol 70 (3) ◽  
pp. 187-198
Author(s):  
Ewa Kupidłowska

The ultrastructure and morphology of roots treated with coumarin and umbelliferone as well as the reversibility of the coumarins effects caused by exogenous GA, were studied in <em>Arabidopsis thaliana</em>. Both coumarins suppressed root elongation and appreciably stimulated radial expansion of epidermal and cortical cells in the upper part of the meristem and in the elongation zone. The gibberellic acid applied simultaneously with coumarins decreased their inhibitory effect on root elongation and reduced cells swelling.Microscopic observation showed intensive vacuolization of cells and abnormalities in the structure of the Golgi stacks and the nuclear envelope. The detection of active acid phosphatase in the cytosol of swollen cells indicated increased membrane permeability. Significant abnormalities of newly formed cell walls, e.g. the discontinuity of cellulose layer, uncorrect position of walls and the lack of their bonds with the mother cell wall suggest that coumarins affected the cytoskeleton.



Sign in / Sign up

Export Citation Format

Share Document