Altering systemic acid - base balance through nutrition failed to change secondary sex ratio

2007 ◽  
Vol 19 (8) ◽  
pp. 887 ◽  
Author(s):  
John R. Roche ◽  
Julia M. Lee

There is evidence that differences in either maternal blood pH or dietary mineral content can result in alterations in secondary sex ratio in mammals. Altering the proportions of certain dietary minerals is known to influence blood pH, offering a possible explanation for this effect of diet on secondary sex ratio. The present study was performed to investigate whether altering blood pH by manipulating the dietary cation–anion difference (DCAD) would alter secondary sex ratio. The DCAD is calculated (in mEq per 100 g dry matter) as the difference between metabolically strong cations (Na + K) and metabolically strong anions (Cl + S) in the diet. Three hundred female mice were randomly allocated to either a low or high DCAD ration for 3 weeks before coitus. Urine pH was monitored before beginning the experiment, as well as before and after the breeding period, as a proxy for blood pH. Mice on the low DCAD diet had a lower urine pH (mean (± s.d.) 6.0 ± 0.1) than mice on the high DCAD diet (8.2 ± 0.6), but DCAD did not affect the percentage of mice that became pregnant, the number of offspring per pregnant mouse or the sex ratio of the neonate group. These results suggest that blood pH alone does not alter sex ratio and that an altered systemic pH is not the reason for reported mineral-related variations in sex ratio.

2019 ◽  
Vol 97 (7) ◽  
pp. 2927-2939 ◽  
Author(s):  
Ji Yao Guo ◽  
Tiago Junior Pasquetti ◽  
Sung Woo Kim

AbstractA study was conducted to evaluate the effects of feeding an acidogenic diet with a low dietary cation-anion difference (DCAD) on acid-base balance, blood, milk, and urine Ca concentrations of sows during lactation. A total of 30 multiparous sows (parity: 4.5 ± 2.9, Smithfield Premium Genetic, Rose Hill, NC) were allotted to 1 of 2 dietary treatments: CON (control diets were corn-soybean meal based with a calculated DCAD of 170 and 226 mEq/kg during late gestation and lactation, respectively) or ACI (acidogenic diets had a DCAD 100 mEq/kg lower than the control diets). The lower DCAD was achieved by the addition of an acidogenic mineral. The DCAD was calculated as mEq (Na + K – Cl)/kg diet. Sows had a daily access to 2-kg feed from day 94 of gestation to parturition and ad libitum access to feed during lactation. Blood and urine pH and Ca, serum macrominerals, serum biochemistry, Ca-regulating hormones, and milk composition were measured. Sows in ACI had a lower (P < 0.05) blood pH than sows in CON at day 1 of lactation. Sows in ACI had a lower (P < 0.05) urine pH at day 108 of gestation, days 1, 9, and 18 of lactation compared with sows in CON. Sows in ACI had greater (P < 0.05) concentrations of serum total Ca at days 1 and 18 of lactation than sows in CON. There was a greater (P < 0.05) concentration of colostrum Ca in ACI than in CON. There was no difference in urine Ca concentration between treatments during lactation. Concentrations of parathyroid hormone and 1,25-dihydroxycholecalciferol were not different between treatments at either day 1 or 18 of lactation. Sows in ACI tended to have a smaller (P = 0.086) concentration of total alkaline phosphatase in serum at day 18 of lactation compared with sows in CON. At day 1 of lactation, the concentration of serum Cl in ACI was greater (P < 0.05) than that in CON. Feed intake, BW loss, and litter performance were not different between treatments. Collectively, feeding an acidogenic diet with a low DCAD to sows can induce a mild metabolic acidosis at farrowing, reduce the urine pH consistently, and increase serum total Ca and colostrum Ca concentrations during lactation but without altering the parathyroid hormone and 1,25-dihydroxycholecalciferol levels during lactation.


2022 ◽  
Vol 52 (6) ◽  
Author(s):  
Lorena Chaves Monteiro ◽  
Rinaldo Batista Viana ◽  
Raffaella Bertoni Cavalcanti Teixeira ◽  
Marcel Ferreira Bastos Avanza ◽  
Pedro Ancelmo Nunes Ermita ◽  
...  

ABSTRACT: The effects of acetate as an alkalinizing agent in maintenance enteral electrolyte solutions administered by nasogastric route in a continuous flow have not been previously described in weaned foals. This is the second part of a study that evaluated the effects of two electrolyte solutions of enteral therapy fluid in weaned foals. In this part, will be considered the effects of enteral electrolyte solutions containing different acetate concentrations on acid-base balance, blood glucose, lactate and urine pH of weaned foals. This was a controlled trial in a cross-over design performed in six foals with a mean age of 7.3 ± 1.4 months. After 12 h of water and food deprivation, each animal received the following two treatments by nasogastric route in a continuous flow of 15 ml/kg/h during 12 h: HighAcetate (acetate 52 mmol/l) and LowAcetate (acetate 22.6 mmol/l). The HighAcetate treatment was effective in generating a slight increase in blood pH, blood bicarbonate concentration, base excess and urinary pH.


1982 ◽  
Vol 242 (3) ◽  
pp. F238-F245 ◽  
Author(s):  
V. L. Hood ◽  
E. Danforth ◽  
E. S. Horton ◽  
R. L. Tannen

To determine whether acid-base balance regulates hydrogen ion production, seven obese volunteers were given NaHCO3 and NH4Cl (2 mmol.kg-1.day-1) during two separate 7-day fasts. On days 5-7 plasma bicarbonate was lower in the NH4Cl fasts (14.0 +/- 1.4 mM) than in the NaHCO3 fasts (18.3 +/- 1.1 mM), while urine pH and net acid excretion did not differ. Acid production (acid excretion minus intake) was greater by 204 mmol/day in the NaHCO3 fasts (274 +/- 16 mmol/day) than in the NH4Cl fasts (70 +/- 19 mmol/day). Ketoacid excretion, which reflected net ketoacid production, paralleled acid production, decreasing from 213 +/- 24 mmol/day in the NaHCO3 fasts to 67 +/- 18 mmol/day in the NH4Cl fasts. Thus, during starvation, alterations in hydrogen ion intake and the associated changes in acid-base balance modify the net production of endogenous acid by influencing the synthesis or utilization of ketoacids. Although the specific site of this metabolic regulation is undefined, these results indicate that systemic acid-base status can exert feedback control over hydrogen ion production.


1989 ◽  
Vol 257 (2) ◽  
pp. F170-F176 ◽  
Author(s):  
J. C. Brown ◽  
R. K. Packer ◽  
M. A. Knepper

Bicarbonate is formed when organic anions are oxidized systemically. Therefore, changes in organic anion excretion can affect systemic acid-base balance. To assess the role of organic anions in urinary acid-base excretion, we measured urinary excretion in control rats, NaHCO3-loaded rats, and NH4Cl-loaded rats. Total organic anions were measured by the titration method of Van Slyke. As expected, NaHCO3 loading increased urine pH and decreased net acid excretion (NH4+ + titratable acid - HCO3-), whereas NH4Cl loading had the opposite effect. Organic anion excretion was increased in response to NaHCO3 loading and decreased in response to NH4Cl loading. We quantified the overall effect of organic ion plus inorganic buffer ion excretion on acid-base balance. The amounts of organic anions excreted by all animals in this study were greater than the amounts of NH4+, HCO3-, or titratable acidity excreted. In addition, in response to acid and alkali loading, changes in urinary organic anion excretion were 40-50% as large as changes in net acid excretion. We conclude that, in rats, regulation of organic anion excretion can contribute importantly to the overall renal response to acid-base disturbances.


Author(s):  
Joanna Kamińska ◽  
Tomasz Podgórski ◽  
Jakub Kryściak ◽  
Maciej Pawlak

This study assesses the status of hydration and the acid-base balance in female handball players in the Polish Second League before and after simulated matches in both indoor (hall) and beach (outdoor) conditions. The values of biochemical indicators useful for describing water-electrolyte management, such as osmolality, hematocrit, aldosterone, sodium, potassium, calcium, chloride and magnesium, were determined in the players’ fingertip capillary blood. Furthermore, the blood parameters of the acid-base balance were analysed, including pH, standard base excess, lactate and bicarbonate ion concentration. Additionally, the pH and specific gravity of the players’ urine were determined. The level of significance was set at p < 0.05. It was found that both indoor and beach simulated matches caused post-exercise changes in the biochemical profiles of the players’ blood and urine in terms of water-electrolyte and acid-base balance. Interestingly, the location of a simulated match (indoors vs. beach) had a statistically significant effect on only two of the parameters measured post-exercise: concentration of calcium ions (lower indoors) and urine pH (lower on the beach). A single simulated game, regardless of its location, directly affected the acid-base balance and, to a smaller extent, the water-electrolyte balance, depending mostly on the time spent physically active during the match.


1988 ◽  
Vol 64 (5) ◽  
pp. 2183-2189 ◽  
Author(s):  
M. Nishimura ◽  
D. C. Johnson ◽  
H. Kazemi

Movement of chloride from cerebrospinal fluid (CSF) to brain or blood is one of the factors that may be involved in regulation of CSF [Cl-], which is important to CSF acid-base balance. We made quantitative measurements of the unidirectional outflux of radiolabeled chloride (38Cl, half-life 37.3 min) from CSF in anesthetized dogs, using ventriculocisternal perfusion (VCP). The outflux of 38Cl from CSF was determined from the difference between the movements of 38Cl and dextran using a one-compartment model. VCP was performed at a rate of 1.4 ml/min for 14 min, and then slowed to 0.28 ml/min. The 38Cl activity decreased to a steady-state level approximately 12% lower than that of dextran within 40–50 min. Under control conditions for the first run (n = 24), the flux was 0.042 +/- 0.003 (SE) ml/min. The outflux under control conditions (n = 6) tended to increase over three separate determinations in a 6-h period, being 136 +/- 19% of the first run on the second run, and 143 +/- 24% on the third. There were no significant changes in 38Cl outflux compared with control ratios after the inclusion of bumetanide in the VCP fluid (n = 6), which inhibits sodium-coupled Cl- transport, with acetazolamide (n = 6), which inhibits carbonic anhydrase, or with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (n = 6), an inhibitor of carrier-mediated anion exchange. These results suggest that the outward movement of chloride from CSF occurs mostly by passive diffusion and is not by mediated transport.


1963 ◽  
Vol 204 (6) ◽  
pp. 1077-1085 ◽  
Author(s):  
Lawrence P. Sullivan ◽  
Michael McVaugh

The Chinard technique of close arterial injection has been adapted to permit a closer study of the relationship of pH to ammonium excretion. NaHCO3, Na4Fe(CN)6, HCl, and creatinine hydrochloride solutions were injected into a renal artery of a dog undergoing osmotic diuresis while 15-sec serial urine and renal venous blood samples were being collected. Because of the difference in transit time between blood and urine the effect of the alteration in blood pH upon ammonium excretion could be seen before the filtered portion of the injection reached the urine. Thus NaHCO3 in the blood raised urine ammonium concentration while urine pH remained relatively constant. Later as NaHCO3 appeared in the urine, pH rose and urine ammonium concentration fell. Na4Fe(CN)6, which decreased blood pH, produced opposite effects. HCl and creatinine hydrochloride caused an immediate fall in both urine pH and ammonium concentration which persisted during the appearance of the injection in the urine. The results of these experiments are interpreted in terms of the theory of nonionic diffusion.


2008 ◽  
Vol 99 (6) ◽  
pp. 1335-1343 ◽  
Author(s):  
Ailsa A. Welch ◽  
Angela Mulligan ◽  
Sheila A. Bingham ◽  
Kay-tee Khaw

Evidence exists that a more acidic diet is detrimental to bone health. Although more precise methods exist for measurement of acid–base balance, urine pH reflects acid–base balance and is readily measurable but has not been related to habitual dietary intake in general populations. The present study investigated the relationship between urine pH and dietary acid–base load (potential renal acid load; PRAL) and its contributory food groups (fruit and vegetables, meats, cereal and dairy foods). There were 22 034 men and women aged 39–78 years living in Norfolk (UK) with casual urine samples and dietary intakes from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk FFQ. A sub-study (n 363) compared pH in casual samples and 24 h urine and intakes from a 7 d diary and the FFQ. A more alkaline diet (low PRAL), high fruit and vegetable intake and lower consumption of meat was significantly associated with a more alkaline urine pH before and after adjustment for age, BMI, physical activity and smoking habit and also after excluding for urinary protein, glucose, ketones, diagnosed high blood pressure and diuretic medication. In the sub-study the strongest relationship was found between the 24 h urine and the 7 d diary. In conclusion, a more alkaline diet, higher fruit and vegetable and lower meat intake were related to more alkaline urine with a magnitude similar to intervention studies. As urine pH relates to dietary acid–base load its use to monitor change in consumption of fruit and vegetables, in individuals, warrants further investigation.


1974 ◽  
Vol 106 (1) ◽  
pp. 1-10 ◽  
Author(s):  
L. A. Lyons ◽  
C. R. Sullivan

AbstractIn Neodiprion sertifer (Geoff.), mortality is greater in males than in females in the egg stage and probably also among early larvae, but in the late larval period females are more susceptible. The evidence consists of the difference in mortality between all-male and mixed (male + female) colonies, as well as the relationship of secondary sex ratio to preceding mortality and the number of survivors per colony. The effect of differential mortality on estimation of the primary sex ratio is discussed.


2007 ◽  
Vol 292 (3) ◽  
pp. G899-G904 ◽  
Author(s):  
Markus Sjöblom ◽  
Olof Nylander

When running in vivo experiments, it is imperative to keep arterial blood pressure and acid-base parameters within the normal physiological range. The aim of this investigation was to explore the consequences of anesthesia-induced acidosis on basal and PGE2-stimulated duodenal bicarbonate secretion. Mice (strain C57bl/6J) were kept anesthetized by a spontaneous inhalation of isoflurane. Mean arterial blood pressure (MAP), arterial acid-base balance, and duodenal mucosal bicarbonate secretion (DMBS) were studied. Two intra-arterial fluid support strategies were used: a standard Ringer solution and an isotonic Na2CO3 solution. Duodenal single perfusion was used, and DMBS was assessed by back titration of the effluent. PGE2 was used to stimulate DMBS. In Ringer solution-infused mice, isoflurane-induced acidosis became worse with time. The blood pH was 7.15–7.21 and the base excess was about −8 mM at the end of experiments. The continuous infusion of Na2CO3 solution completely compensated for the acidosis. The blood pH was 7.36–7.37 and base excess was about 1 mM at the end of the experiment. Basal and PGE2-stimulated DMBS were markedly greater in animals treated with Na2CO3 solution than in those treated with Ringer solution. MAP was slightly higher after Na2CO3 solution infusion than after Ringer solution infusion. We concluded that isoflurane-induced acidosis markedly depresses basal and PGE2-stimulated DMBS as well as the responsiveness to PGE2, effects prevented by a continuous infusion of Na2CO3. When performing in vivo experiments in isoflurane-anesthetized mice, it is recommended to supplement with a Na2CO3 infusion to maintain a normal acid-base balance.


Sign in / Sign up

Export Citation Format

Share Document