In vitro production and cryotolerance of prepubertal and adult goat blastocysts obtained from oocytes collected by laparoscopic oocyte-pick-up (LOPU) after FSH treatment

2009 ◽  
Vol 21 (7) ◽  
pp. 901 ◽  
Author(s):  
Giovanni Giuseppe Leoni ◽  
Sara Succu ◽  
Valentina Satta ◽  
Mereu Paolo ◽  
Luisa Bogliolo ◽  
...  

This study compares the developmental capacity and cryotolerance of embryos produced from oocytes of stimulated prepubertal and adult Sarda goats. Twelve prepubertal and 13 adult goats were each given 110 and 175 IU FSH, respectively, and cumulus–oocyte complexes (COCs) were collected by laparoscopic oocyte-pick-up (LOPU). After in vitro maturation, fertilisation and culture (IVMFC), blastocysts were vitrified, warmed and blastocoel re-expansion and gene expression were evaluated. Prepubertal goats produced a higher COCs number than adults (mean ± s.e.m., 89.67 ± 5.74 and 26.69 ± 3.66, respectively; P < 0.01). Lower developmental competence was demonstrated in the prepubertal oocytes as shown by a higher number of COCs discarded before IVM (21.1% and 14.7% for prepubertals and adults, respectively; P < 0.01) and IVF (23.4% v. 9.1%; P < 0.01) and by the lower cleavage (55.6% and 70.3%, respectively; P < 0.01) and blastocyst rates (24.2% and 33.9%, respectively; P < 0.05). Compared with the adult, prepubertal vitrified/warmed blastocysts showed significantly (P < 0.05) lower in vitro viability, as determined by the re-expansion rate (62.5% and 40.3%). No differences were observed in the time required for blastocoel re-expansion or in cyclin B1, E-cadherin, Na/K ATPase, HSP90β and aquaporin 3 messenger RNA quantity. These results show that in vitro-produced embryos produced from prepubertal goat oocytes have a lower developmental rate and cryotolerance compared with their adult counterparts. However, we can assume that the quality of re-expanded embryos does not differ between the two groups.

2013 ◽  
Vol 25 (1) ◽  
pp. 250
Author(s):  
N. Schlüter ◽  
A. Hanstedt ◽  
H. Stinshoff ◽  
K. Knauer ◽  
S. Wilkening ◽  
...  

The developmental competence of cumulus–oocyte complexes (COC) used for in vitro production is dependent on several factors including the stage of the oestrus cycle. In a recent study, we were able to show that circulating progesterone (P4) had no effect on follicle number, size, recovery rate, or in vitro production suitability of recovered COC (Schlüter et al. 2012 Reprod. Fertil. Dev. 24, 175–176). The aim of the present study was to determine the influence of circulating P4 concentrations on the molecular quality of bovine COC collected during repeated OPU sessions. The COC were aspirated twice per week for 5 to 6 weeks from 12 Holstein Friesian heifers. The first OPU session took place on Day 7 of the oestrous cycle after spontaneous ovulation (ovulation = Day 0). Blood samples were taken at the time of each OPU session, and P4 concentrations were determined using a radioimmunoassay. All animals showed clinical signs of oestrus and large follicles (≥8.5 mm) during the course of the OPU sessions. Following the aspiration of a large follicle, a CL-like structure (induced CL) could be detected. According to the P4 concentrations, the cycle was divided into 3 phases: CL phase after spontaneous ovulation (oCL; P4: ≥1 ng mL–1), follicle phase 1 (Fp; P4 <1 ng mL–1), and induced CL phase (iCL; P4: ≥1 ng mL–1). The length of the cycle after spontaneous ovulation did not differ significantly from that after induced ovulation (22.4 ± 3.1 days v. 23.8 ± 1.8 days, respectively). During the oCL-phase, blood P4 concentrations were significantly higher than during the iCL-phase (4.9 ± 2.3 ng mL–1 v. 3.0 ± 1.6 ng mL–1). For mRNA analysis, denuded COC were individually frozen at –80°C to analyse the relative transcript abundance using RT-qPCR. The transcripts studied play important roles during oocyte development [growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), glucose transporter 1 (SCL2A1), hypoxia inducible factor 2α (HIF2α), progesterone receptor (PGR), progestin and adipoQ receptor 5 (PAQR5), progesterone receptor membrane component 1 and 2 (PGRMC1, PGRMC2)]. Data were tested using analysis of variance (ANOVA) followed by multiple pairwise comparisons using Tukey’s test. A P-value of ≤0.05 was considered significant. The relative abundance of all transcripts except SCL2A1 was significantly increased in oocytes collected from follicles of the oCL phase compared with that from oocytes that had been aspirated during the iCL phase. A significant increase in the relative amount of PGR, PGRMC1, PGRMC2, and BMP15 transcripts was detected in oocytes stemming from the follicular phase to those from the iCL phase. No differences in the relative abundance of all transcripts were seen comparing oocytes from oCL phase and oocytes from the follicular phase. In summary, circulating P4 concentrations had an effect on the molecular quality of COC recovered during repeated OPU session, which might affect further development. The financial support of the FBF (Förderverein Biotechnologieforschung) e.V. is gratefully acknowledged.


2007 ◽  
Vol 19 (1) ◽  
pp. 206
Author(s):  
I. G. F. Goovaerts ◽  
J. B. P. De Clercq ◽  
M. Nichi ◽  
P. E. J. Bols

An in vitro production system where a single oocyte can be followed from the ovary to the blastocyst stage would be a useful tool for studies concerning developmental competence or follicular environment. Unfortunately, until now, only low blastocyst rates could be obtained after single embryo production, and there is still discussion about the ideal droplet size. The objective of the present experiment was to compare the developmental competence of single cultivated zygotes in 20- and 500-µL droplets. Cumulus–oocyte complexes were obtained from slaughterhouse ovaries and were matured and fertilized in groups of 100 for 22 h; the presumptive zygotes were divided into 4 groups. In treatment 1, 25 zygotes were transferred into 50 µL of SOF medium supplemented with 5% serum under oil, whereas in treatment 2, 25 zygotes were transferred into 500 µL of medium. Zygotes were cultivated separately in treatments 3 and 4: in treatment 3 in 20 µL of medium under oil and in treatment 4 in 500 µL of medium. Cleavage rates and division stages were assessed after 3 days of cultivation (5% CO2, 5% O2, 90% N2); blastocyst rates were determined after 7 days. Statistical analysis was performed by logistic regression using SAS (PROC LOGISTIC). There was no difference in cleavage rates between the 2 group treatments or between the 2 single treatments. Also, the division stages were not different between the 2 single treatments (16-cell: 2.0 vs. 1.3%; 8-cell: 25.8 vs. 31.6%; 4-cell: 41.2 vs. 38.0%; and 2-cell: 31.0 vs. 29.1% for the 20 µL and the 500 µL droplet sizes, respectively). Group cultivation after 7 days in 50 µL was significantly better than in 500 µL; however, both treatments resulted in significantly higher blastocyst rates compared with the individual cultures in 20 or 500 µL, between which no significant difference could be found. Noteworthy, only 4-cell and 8-cell stages on Day 3 resulted in blastocysts on Day 7 of cultivation. In conclusion, these results indicate that cultivation in groups gives higher blastocyst rates, although the same embryo density is used as in individual cultivation (1 embryo 20 µL in treatments 2 and 3). Moreover, no significant difference could be found between single cultivation in small and big droplets. This is confirmed by the cleavage stages on Day 3, which indicate no difference in timing of cleaving between small and big droplets; time of cleaving is indicative of further developmental capacity. Table 1.Cleavage and blastocyst rates after single and group cultivation


2009 ◽  
Vol 21 (1) ◽  
pp. 209
Author(s):  
Y. Serita ◽  
C. Kubota ◽  
T. Kojima

This study tested whether embryo development yield using in vitro fertilization (IVF) could be improved by rocking cultures. Bovine ovaries were obtained at a slaughterhouse and transported to the laboratory within 6 h. Cumulus–oocyte complexes were collected and 20–25 were transferred in 100-μL drops of TCM-199 containing 10% fetal bovine serum and antibiotics under paraffin oil. Maturation was for 20–24 h at 38.5°C under 5% CO2 and 95% air in a humid atmosphere (IVM). In vitro fertilization was carried out for 6 h using frozen–thawed sperm from a single bull in modified Brackett and Oliphant (BO) medium. Presumptive zygotes were cultured in CR1aa supplemented with 10 mg mL–1 of BSA or 5% FBS for 9 d at 38.5°C under 5% CO2, 5% O2, and 90% N2 in a humid atmosphere (IVC). Rocking was performed to a height of 6 cm every 7 s using a Profile Rocker (New Brunswick Scientific Co., Edison, NJ, USA) in an incubator. Dishes were placed at a 15-cm distance from the fulcrum of the rocker. The conventional method (no rocking) served as a control, and every experiment was replicated 3 times. For Experiment 1, the effect of the period of rocking on developmental competence was examined when COC or zygotes were subjected to rocking for IVM, IVF, or IVC (IVM-move, IVF-move, and IVC-move). There were no significant differences in rates of oocyte maturation, cleavage, and development for IVM-move v. the control, or for rate of development between IVC-move and the control. However, the rate of fertilization for IVF-move was higher than that of the control (88.9 v. 67.5%; P < 0.01), and the rate of development was higher for IVF-move than for the control (39.0 v. 25.7%; P < 0.05). For Experiment 2, the effect of rocking frequency during IVF on development was determined. The IVF cultures were rocked every 7, 3.5, and 1.5 s (IVF-1move, IVF-2move, IVF-3move). The rates of cleavage on IVF-1move, IVF-2move, IVF-3move, and the control were 74.3, 69.8, 68.8, and 60.4%, and the rates of development were 39.0, 48.3, 26.2, and 25.7%, respectively. The rates of development on IVF-1move and IVF-2move were significantly different from the control and IVF-3move (P < 0.01). These results showed that rocking during IVF improved fertilization and embryo yield, and that frequency of rocking affected embryo development.


2020 ◽  
Vol 18 (2) ◽  
pp. 249-255
Author(s):  
Nguyen Viet Linh ◽  
Nguyen Thi Hiep

In pigs, embryo productivity is still lower than that in other livestocks. One of the reasons is incomplete maturation of porcine oocytes in in vitro conditions. Therefore in vitro maturation (IVM) plays a crucial role in in vitro production of porcine embryos. It provides prerequisite condition to in fertilization and subsequent development of porcine embryos. In a previous study, effects of NCSU-37-based medium and TCM-199-based media supplemented with porcine follicular fluid (pFF) or Fetal Bovine Serum (FBS) on in vitro maturation of Landrace oocytes collected in Vietnam have been compared, suggesting that NCSU-37 medium supplemented with 10% of porcine follicular fluid (pFF) had the highest rate of oocytes reach to metaphase II stage in comparison to those of the other two TCM-199-based media. In the present study, further experiments were carried out to evaluate the contribution of IVM media on fertilization capability and developmental competence. Porcine oocytes matured in vitro in 3 media: NCSU-37 supplemented with 10% pFF, TCM-199 supplemented with either 10% pFF or 10% FBS were subjected to in vitro fertilization and subsequent in vitro culture to monitor fertility and embryo development. The results showed that penetration and normal fertilization rates in both TCM-199 groups are both higher than that of NCSU-37 group. Moreover, the cleavage and blastocyst rates, and cell numbers of blastocysts which is a criterion for embryo quality were all higher in TCM-199 groups, especially in the group supplemented with pFF. It might be concluded that TCM-199 media supplemented with either pFF or FBS are suitable for effective in vitro maturation of Landrace porcine oocytes collected in Vietnam.


2004 ◽  
Vol 16 (2) ◽  
pp. 204 ◽  
Author(s):  
J. Ye ◽  
K.H.S. Campbell ◽  
M.R. Luck

It is suggested that the relatively high rates of polyspermic fertilization and poor development of pig embryos produced in vitro are caused by asynchronous oocyte maturation. We have recently shown that pre-treatment of pig oocytes with cycloheximide (CHX) is an efficient way of synchronizing their meiotic maturation in vitro. However, it is not known whether this procedure affects fertilization or further development. The present study examined the effects of CHX-synchronised meiotic maturation on subsequent embryo development and the response to FSH. Pig ovaries were collected from a local abattoir. Cumulus-oocyte complexes (COCs) were aspirated from 3–5mm diameter follicles with a translucent appearance and extensive vascularization. COCs were first pre-incubated in defined maturation medium (DM; M199 with Earle’s salts, 25mM HEPES and sodium bicarbonate, 3mM L-glutamine, 0.1% (w/v) BSA, 0.57mM cysteine, 10ngmL−1 EGF, 0.2μgmL−1 pLH, 100μmL−1 penicillin and 0.1mgmL−1 streptomycin) or in DM supplemented with 50ngmL−1 pFSH (DMF) and 5μgmL−1 CHX for 12h. COCs were then further cultured in the same DM without CHX for 24–30h or in DMF for 36h. For controls, COCs were cultured conventionally in DM for 42h or DMF for 48h. After removal of cumulus cells, all cultured oocytes were inseminated with ejaculated sperm at a final concentration of 300000mL−1 for 6h. The IVF medium was modified Tris-buffered medium containing 0.1% BSA, 20μM adenosine and 0.2mM reduced glutathione. Putative embryos were cultured in NCSU23 without glucose but supplemented with 4.5mM Na lactate and 0.33 mM Na pyruvate for 2 days. Cleaved embryos were further cultured in normal NCSU23 for 4 days. IVM and IVF were performed in 5% CO2 in air and IVC in 5% CO2, 5% O2, 90% N2, all at 39°C and 95% RH. Three replicates with DM, with or without CHX, and one with DMF, with or without CHX, were performed with 30–50 oocytes in each replicate. Statistical comparisons were by t-test. The result with DM showed that the rate for normal cleavage at 2 days after insemination of CHX-treated oocytes (40.6±3.8%) was similar to that of controls (40.4±3.5%). However, the proportion developing to healthy blastocysts at Day 6 was significantly higher in the CHX-treated group (16.9±1.2%) than in controls (9.6±1.3%; P&lt;0.05). A significantly higher number of Day 2-cleaved embryos from CHX-treated oocytes developed to the day 6 blastocyst stage compared with controls (44.7±5.0% and 22.3±2.4%, respectively; P&lt;0.05). Supplementation of the basic maturation medium with pFSH increased the rate of cleavage in both CHX-treated oocytes (73.2%) and controls (76.9%) and increased the proportions developing to healthy blastocysts at Day 6 (CHX-treated: 39.0%; control: 11.5%). We conclude that oocytes pre-treated with CHX retain their developmental competence and that meiotic synchronization with CHX improves the efficiency of in vitro production of pig embryos. (Supported by BBSRC 42/S18810.)


2018 ◽  
Vol 30 (1) ◽  
pp. 164
Author(s):  
M. Fathi ◽  
A. R. Moawad ◽  
M. R. Badr

Cryopreservation of oocyte would be an alternative to overcome the limited availability of dromedary camel oocytes and allow improvements in in vitro production in this species. Our aim was to develop a protocol for vitrification of dromedary camel oocytes at the germinal vesicle (GV) stage using various cryoprotectant combinations and cryo-carriers. In experiment 1, cumulus–ppcyte complexes (COC) obtained at slaughter were equilibrated in a solution composed of 10% ethylene glycol (EG) and 0.25 M trehalose. The oocytes were then exposed for 60 s to vitrification solutions (VS) composed of 20% EG and 20% dimethyl sulfoxide (DMSO; VS1) or 25% EG plus 25% DMSO (VS2) or 25% EG and 25% glycerol (VS3). The COC were then transferred into decreasing concentration of trehalose solution (toxicity test). In experiment 2, COC were randomly divided into 4 groups and vitrified by using straw or open pulled-straw (OPS) or solid surface vitrification (SSV) or cryotop in VS1 or VS2. Following vitrification and warming viable oocytes were matured in vitro for 30 h at 39°C in 5% CO2 in air. Matured oocytes were fertilized in vitro by epididymal spermatozoa of mature male camels and then cultured in modified KSOMaa medium for 7 days. Oocyte viability, maturation, fertilization, and embryo development were evaluated. Data were analysed using one-way ANOVA and t-test. Viability and nuclear maturation rates were significantly lower (P ≤ 0.05) in oocytes exposed to VS3 (44.8% and 34.0%) than those exposed to VS1 (68.2% and 48.0%) and VS2 (79.3% and 56.9%). Although recovery rates were significantly lower (P ≤ 0.05) in oocytes vitrified using SSV or cryotop in either VS1 or VS2 solutions (66.9% to 71.1%) than those vitrified by straws using VS1 or VS2 solutions (86.3% to 91.0%), survival rates were higher in SSV and cryotop groups (90.7% to 94.8%) than straw and OPS (68.2% to 86.5%) groups. Among vitrified groups, maturation and fertilization rates (51.8% and 39.2%, respectively) were the highest in the cryotop-VS2 group. Those values were comparable to those seen in the controls (59.2% and 44.6%, respectively). Cleavage (22.5% to 27.9%), morula (13.2% to 14.5%), and blastocyst (6.4% to 8.5%) rates were significantly higher (P ≤ 0.05) in SSV and cryotop groups than in straws. No significant differences were observed in these parameters between cryotop and control groups. Together, the results show that both vitrification solution and cryodevice affect viability and developmental competence of vitrified/warmed dromedary camel oocytes. We report for the first time that dromedary camel oocytes vitrified at the GV stage have the ability to be matured, fertilized, and subsequently develop in vitro to produce blastocyst embryos at frequencies comparable to those obtained using fresh oocytes.


2016 ◽  
Vol 28 (2) ◽  
pp. 217
Author(s):  
R. Corrêa ◽  
J. R. Maio ◽  
J. Garcia

Ovum pick-up (OPU) and aspirated oocytes produced by in vitro production (IVP) are obtained at random stages of the oestrus cycle and are exposed to different concentrations of oestradiol, progesterone, LH and FSH. These factors may influence the oocyte developmental competence of in vitro embryos. The studies with young females aroused the interest of the investigated for decades and showed that one of the advantages working with young animals would be the amount of follicles that develop are best quality when comparing with pubertal animals. However some studies have shown a reduction in the competence of prepubertal oocytes can be partly attributed to the smaller size of the oocyte, differences in protein synthesis and energy metabolism, delayed migration of cytoplasmic organelles and reduced activity of some enzymes. The aim of this study was to evaluate the influence of injectable long-acting progesterone in embryonic development of prepubertal Nelore females. The OPU and treatments were carried out on the farm João Martins, in the county of Guatapará, São Paulo, Brazil, and laboratory stages of production in vitro embryo, the Department of Preventive Veterinary Medicine and Animal Reproduction, UNESP-Jaboticabal. They were select 21 heifers, Nelore, prepubertal of 127 animals. The selection was based on age, bodyweight, and absence of corpus luteum. The selected animals were aged 18 to 20 months and not pregnant with average bodyweight was 268 kg. The donor oocytes were divided into 3 experimental groups crossover design as follows: Group (P0, n = 21), animals in this group received 2 placebo oily solution applications (1 mL), interval of 7 days beginning 14 days (Day 14) before the first aspiration (Day 0); Group (P7; n = 21): the animals received a placebo solution oily application (1 mL), 14 days (Day 14) and progesterone (P4) injection (150 mg) 7 days (Day 7) before aspiration; Group (P14, n = 21), animals in this group received 2 injections P4 applications (150 mg) with an interval of 7 days, the first 14 days (Day 14) and the second 7 days (Day 7) before aspiration. There were a total of 3 OPU an interval of 28 days. After the first follicular aspiration groups were divided again so that all the animals go through all treatments. After confirming the homoscedasticity (BoxCox) and normal (Cramér-von Mises test) data, was conducted the analysis of variance (ANOVA). The Tukey test was used for comparisons of mean variables. The groups P0, P7, and P14 had an average of 4.04, 5.03, and 4.43 embryos produced by session. To assess embryonic development, it was observed that the treated groups (P7 and P14) and control (P0) produced a greater amount of expanded blastocyst, 3.40 ± 3.74, 2.57 ± 2.67 and 3.14 ± 3.41, respectively (P > 0.05). It was observed differences (P < 0.05) in the early blastocyst production in the treated groups produce a greater amount. The use of long-acting injectable progesterone improved did not delay embryo development in vitro but did not alter the production of embryos from prepubertal Nelore heifers.


1997 ◽  
Vol 47 (5) ◽  
pp. 1061-1075 ◽  
Author(s):  
P. Blondin ◽  
K. Coenen ◽  
L.A. Guilbault ◽  
M.-A. Sirard

2005 ◽  
Vol 17 (6) ◽  
pp. 593 ◽  
Author(s):  
Katherine M. Morton ◽  
Sally L. Catt ◽  
W. M. Chis Maxwell ◽  
Gareth Evans

Experiments were conducted to determine the effects of lamb age, hormone stimulation (Experiment 1) and response to stimulation (Experiment 2) on the in vitro production of embryos from prepubertal lambs aged 3–4 and 6–7 weeks of age. For 3–4-week-old lambs, hormone stimulation increased the number of follicles (29.9 ± 15.3 v. 70.6 ± 8.2), oocytes per ovary (18.3 ± 6.3 v. 39.3 ± 5.8) and oocyte development to the blastocyst stage (0/192 (0.0%) v. 115/661 (17.4%); P < 0.05). Lamb age (3–4 v. 6–7 weeks old) increased oocyte development to the blastocyst stage (115/661 (17.4%) v. 120/562 (21.4%) respectively). In Experiment 2, hormone-stimulated lambs (3–4 and 6–7 weeks old) were divided into low, medium or high responders based on the number of ovarian follicles (<20, 20–50 and >100 follicles per ovary respectively). The response to hormone stimulation did not affect oocyte recovery rate, but the number of oocytes suitable for culture was increased for high-responding 3–4-week-old lambs only (P < 0.05). Oocyte development to the blastocyst stage was not affected by response to stimulation for 3–4-week-old lambs (15.2–25.6%; P > 0.05), but was reduced for high (6.7%) compared with low (19.5%) and medium (30.9%) responding 6–7-week-old lambs (P < 0.05). These results demonstrate that the production of embryos from prepubertal lambs is increased by hormone stimulation and lamb age and the response to stimulation does not affect embryo production from 3–4-week-old lambs, although by 6–7 weeks of age a high response to stimulation reduces blastocyst formation.


Sign in / Sign up

Export Citation Format

Share Document