Embryo biotechnology in the dog: a review

2010 ◽  
Vol 22 (7) ◽  
pp. 1049 ◽  
Author(s):  
Sylvie Chastant-Maillard ◽  
Martine Chebrout ◽  
Sandra Thoumire ◽  
Marie Saint-Dizier ◽  
Marc Chodkiewicz ◽  
...  

Canine embryos are a scarce biological material because of difficulties in collecting in vivo-produced embryos and the inability, to date, to produce canine embryos in vitro. The procedure for the transfer of in vivo-produced embryos has not been developed adequately, with only six attempts reported in the literature that have resulted in the birth of 45 puppies. In vitro, the fertilisation rate is particularly low (∼10%) and the incidence of polyspermy particularly high. So far, no puppy has been obtained from an in vitro-produced embryo. In contrast, cloning of somatic cells has been used successfully over the past 4 years, with the birth of 41 puppies reported in the literature, a yield that is comparable to that for other mammalian species. Over the same period, canine embryonic stem sells and transgenic cloned dogs have been obtained. Thus, the latest reproductive technologies are further advanced than in vitro embryo production. The lack of fundamental studies on the specific features of reproductive physiology and developmental biology in the canine is regrettable in view of the increasing role of dogs in our society and of the current demand for new biological models in biomedical technology.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ellen Menkhorst ◽  
Nandor Gabor Than ◽  
Udo Jeschke ◽  
Gabriela Barrientos ◽  
Laszlo Szereday ◽  
...  

Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.


2000 ◽  
Vol 1 (2) ◽  
pp. 95-102 ◽  
Author(s):  
Roongroje Thanawongnuwech ◽  
Patrick G. Halbur ◽  
Eileen L. Thacker

AbstractThe objective of this article is to summarize the current state of knowledge of the complex interaction of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine pulmonary intravascular macrophages (PIMs). PIMs play an important role in pulmonary surveillance, and in the past few years we have investigated their role in PRRSV infection. PRRSV antigens and nucleic acids have been demonstrated in PIMs bothin vitroandin vivo. Examination of cultured PIMs infected with PRRSV revealed the accumulation of viral particles in the smooth-walled vesicles. PRRSV-infected PIMsin vitroyielded a virus titer similar to pulmonary alveolar macrophages. PRRSV infection induces either apoptosis or cell lysis of PIMs. Thein vitrobactericidal activity of PRRSV-infected PIMs is significantly decreased. Phagocytic activity of PIMs, as measured by pulmonary copper clearance, is significantly decreased in PRRSV-infected pigs. This evidence supports the hypothesis that PRRSV-induced damage to PIMs results in increased susceptibility to bacteremic diseases. Recent studies with PRRSV andStreptococcus suiscoinfection confirmed that PRRSV predisposes pigs toS. suisinfection and bacteremia. These results could explain the increase in bacterial respiratory diseases and septicemias observed in PRRSV-infected pigs.


2007 ◽  
Vol 19 (1) ◽  
pp. 200
Author(s):  
A. Minamihashi ◽  
S. Moriyasu ◽  
H. Takahashi ◽  
H. Hirayama ◽  
M. Geshi ◽  
...  

Parthenogenetic activation (PA) is a useful technique for reproductive technologies such as somatic cell nuclear transfer. Furthermore, there is a possibility of embryonic stem cell establishment deriving from PA embryos (Cibelli et al. 2002 Science 295, 819). Understanding of the ability of development and differentiation in PA embryos is important for the application. This study was designed to assess the gene expression of octamer-binding transcription factor (OCT-4) and interferon τ (IFNτ) in bovine PA embryos at the blastocyst (BC) and elongated (EL) stages, and the protein secretion of IFNτ at the EL stage. PA embryos were produced from oocytes matured in vitro (24 h), activated with Ca-ionophore (5 min) and electric pulse, and then treated with cytochalasin B and cycloheximide (5 h). In vivo-produced (Vivo) embryos were obtained non-surgically at Day 8 (Day 0 = estrus) from superovulated donor cows. PA or Vivo embryos were transferred to recipient cows (PA: 10 embryos/cow; Vivo: 1 embryo/cow) at Day 8, and then recovered non-surgically with uterine flushings at Day 16. Total RNA in single BC and EL embryos were reverse transcribed for PCR. Quantification of mRNA abundance was performed by real-time PCR. The expression of each mRNA was normalized to the abundance of GAPDH. IFNτ secretion of uterine flushings was estimated by RIA (Takahashi et al. 2005 Theriogenology 63, 1050–1060). The cleavage and blastocyst developmental rates of PA oocytes were 65.8 and 29.7%, respectively. Most embryos had positive signals of OCT-4 and IFNτ regardless of the origin and stage of embryos. The relative abundance (mean � SEM) of OCT-4 expression in PA and Vivo embryos dropped to its lowest level (1.78 � 0.32 and 1.14 � 0.45, respectively) at the EL stage, and it was significantly lower than that at the BC stage (1018.87 � 148.69 and 696.29 � 151.80, respectively; P < 0.05). The transcript level of OCT-4 was not significantly different between PA and Vivo embryos at both stages. Although the transcript level of IFNτ in PA and Vivo embryos increased significantly at the EL stage (0.36 � 0.06 and 7.68 � 2.01, respectively) from the BC stage (0.03 � 0.01 and 0.01 � 0.004, respectively; P < 0.05), that in PA embryos was significantly lower than that in Vivo embryos at the EL stage (P < 0.01). The total amount (mean � SEM) of IFNτ in uterine flushings from cows with transferred PA embryos was 3.38 � 0.35 �g (the number of embryos in each uterine flushing was unknown), and it was low compared with that from cows with Vivo embryos (13.40 � 3.03 �g). Our results indicate that bovine PA embryos have the ability to secrete IFNτ in the uteri of recipient cows at the EL stage, and there is a similar expression pattern of OCT-4 for Vivo embryos.


2015 ◽  
Vol 8s2 ◽  
pp. BCI.S30377 ◽  
Author(s):  
Han Wang ◽  
Xie Luo ◽  
Jake Leighton

Embryonic stem cells (ESCs) are pluripotent cells with great therapeutic potentials. The in vitro differentiation of ESC was designed by recapitulating embryogenesis. Significant progress has been made to improve the in vitro differentiation protocols by toning soluble maintenance factors. However, more robust methods for lineage-specific differentiation and maturation are still under development. Considering the complexity of in vivo embryogenesis environment, extracellular matrix (ECM) cues should be considered besides growth factor cues. ECM proteins bind to cells and act as ligands of integrin receptors on cell surfaces. Here, we summarize the role of the ECM and integrins in the formation of three germ layer progenies. Various ECM–integrin interactions were found, facilitating differentiation toward definitive endoderm, hepatocyte-like cells, pancreatic beta cells, early mesodermal progenitors, cardiomyocytes, neuroectoderm lineages, and epidermal cells, such as keratinocytes and melanocytes. In the future, ECM combinations for the optimal ESC differentiation environment will require substantial study.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Anichavezhi Devendran ◽  
Rasheed Bailey ◽  
Sumanta Kar ◽  
Francesca Stillitano ◽  
Irene Turnbull ◽  
...  

Background: Heart failure (HF) is a complex clinical condition associated with substantial morbidity and mortality worldwide. The contractile dysfunction and arrhythmogenesis related to HF has been linked to the remodelling of calcium (Ca ++ ) handling. Phospholamban (PLN) has emerged as a key regulator of intracellular Ca ++ concentration. Of the PLN mutations, L39X is intriguing as it has not been fully characterized. This mutation is believed to be functionally equivalent to PLN null (KO) but contrary to PLN KO mice, L39X carriers develop a lethal cardiomyopathy (CMP). Our study aims at using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from homozygous L39X carriers to elucidate the role of L39X in human pathophysiology. Our plan also involves the characterization of humanized L39X knock-in mice (KM), which we hypothesize will develop a CMP from mis-localization of PLN and disruption of Ca ++ signalling. Methodology and Results: Mononuclear cells from Hom L39X carriers were obtained to generate 11 integration-free patient-specific iPSC clones. The iPSC-CMs were derived using established protocols. Compared to the WT iPSC-CMs, the Hom L39X derived-CMs PLN had an abnormal cytoplasmic distribution and formed intracellular aggregates, with the loss of perinuclear localization. There was also a 70% and 50% reduction of mRNA and protein expression of PLN respectively in L39X compared to WT iPSC-CMs. These findings indicated that L39X PLN is both under-expressed and mis-localized within the cell. To validate this observation in-vivo, we genetically modified FVB mice to harbour the human L39X. Following electroporation, positively transfected mouse embryonic stem cells were injected into host blastocysts to make humanized KM that were subsequently used to generate either a protamine-Cre (endogenous PLN driven expression) or a cardiac TNT mouse (i.e., CMP specific). Conclusion: Our data confirm an abnormal intracellular distribution of PLN, with the loss of perinuclear accumulation and mis-localization, suggestive of ineffective targeting to or retention of L39X. The mouse model will be critically important to validate the in-vitro observations and provides an ideal platform for future studies centred on the development of novel therapeutic strategies including virally delivered CRISPR/Cas9 for in-vivo gene editing and testing of biochemical signalling pathways.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1614
Author(s):  
Paulina Podkalicka ◽  
Jacek Stępniewski ◽  
Olga Mucha ◽  
Neli Kachamakova-Trojanowska ◽  
Józef Dulak ◽  
...  

Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shailesh Dugam ◽  
Rahul Tade ◽  
Rani Dhole ◽  
Sopan Nangare

Abstract Background Microneedles (MNs) are the utmost unique, efficient, and minimally invasive inventions in the pharmaceutical field. Over the past decades, many scientists around the globe have reported MNs cautious because of their superb future in distinct areas. Concerning the wise use of MNs herein, we deal in depth with the present applications of MNs in drug delivery. Main text The present review comprises various fabrication materials and methods used for MN synthesis. The article also noted the distinctive advantages of these MNs, which holds huge potential for pharmaceutical and biomedical applications. The role of MNs in serving as a platform to treat various ailments has been explained accompanied by unusual approaches. The review also inculcates the pharmacokinetics of MNs, which includes permeation, absorption, and bioavailability enhancement. Besides this, the in vitro/in vivo toxicity, biosafety, and marketed product of MNs have been reviewed. We have also discussed the clinical trials and patents on the pharmaceutical applications of MNs in brief. Conclusion To sum up, this article gives insight into the MNs and provides a recent advancement in MNs, which pave the pathway for future pharmaceutical and biomedical applications. Graphical abstract Pharmaceutical and biomedical applications of MNs


2008 ◽  
Vol 22 (3) ◽  
pp. 665-675 ◽  
Author(s):  
Pia Rantakari ◽  
Leena Strauss ◽  
Riku Kiviranta ◽  
Heidi Lagerbohm ◽  
Jenni Paviala ◽  
...  

Abstract Hydroxysteroid (17-β) dehydrogenase 2 (HSD17B2) is a member of aldo-keto reductase superfamily, known to catalyze the inactivation of 17β-hydroxysteroids to less active 17-keto forms and catalyze the conversion of 20α-hydroxyprogesterone to progesterone in vitro. To examine the role of HSD17B2 in vivo, we generated mice deficient in Hsd17b2 [HSD17B2 knockout (KO)] by a targeted gene disruption in embryonic stem cells. From the homozygous mice carrying the disrupted Hsd17b2, 70% showed embryonic lethality appearing at the age of embryonic d 11.5 onward. The embryonic lethality was associated with reduced placental size measured at embryonic d 17.5. The HSD17B2KO mice placentas presented with structural abnormalities in all three major layers: the decidua, spongiotrophoblast, and labyrinth. Most notable was the disruption of the spongiotrophoblast and labyrinthine layers, together with liquid-filled cysts in the junctional region and the basal layer. Treatments with an antiestrogen or progesterone did not rescue the embryonic lethality or the placenta defect in the homozygous mice. In hybrid background used, 24% of HSD17B2KO mice survived through the fetal period but were born growth retarded and displayed a phenotype in the brain with enlargement of ventricles, abnormal laminar organization, and increased cellular density in the cortex. Furthermore, the HSD17B2KO mice had unilateral renal degeneration, the affected kidney frequently appearing as a fluid-filled sac. Our results provide evidence for a role for HSD17B2 enzyme in the cellular organization of the mouse placenta.


2021 ◽  
Author(s):  
Julian Stolper ◽  
Holly K. Voges ◽  
Michael See ◽  
Neda Rahmani Mehdiabadi ◽  
Gulrez Chahal ◽  
...  

AbstractThere is growing evidence that mutations in non-coding cis-regulatory elements (CREs) disrupt proper development. However, little is known about human CREs that are crucial for cardiovascular development. To address this, we bioinformatically identified cardiovascular CREs based on the occupancy of the CRE by the homeodomain protein NKX2-5 and cardiac chromatin histone modifications. This search defined a highly conserved CRE within the FLT1 locus termed enFLT1. We show that the human enFLT1 is an enhancer capable of driving reporter transgene expression in vivo throughout the developing cardiovascular system of medaka. Deletion of the human enFLT1 enhancer (ΔenFLT1) triggered molecular perturbations in extracellular matrix organisation and blood vessel morphogenesis in vitro in endothelial cells derived from human embryonic stem cells and vascular defects in vivo in medaka. These findings highlight the crucial role of the human FLT1 enhancer and its function as a regulator and buffer of transcriptional regulation in cardiovascular development.


2019 ◽  
Vol 180 (2) ◽  
pp. R73-R89 ◽  
Author(s):  
Konstantinos Kalafatakis ◽  
Georgina M Russell ◽  
Stafford L Lightman

Glucocorticoids are a class of systematically secreted hormones, vital for mammalian life, which are intensively investigated for more than 80 years. They regulate multiple body processes like metabolism, fluid homeostasis, immune and stress system responsivity, as well as brain function. Glucocorticoids have a complex rhythm by which they are released to circulation from the adrenal cortex. The hormone exhibits a circadian variation, with high hormonal levels being secreted just prior and during the active part of the day, and progressively lower and lower amounts being released during the inactive part of it. Underlying this diurnal variation there is a more dynamic, ultradian rhythm composed of frequent episodes of glucocorticoid secretion (hormonal pulses). Accumulating evidence from observational, in silico, in vitro and in vivo, preclinical and clinical studies suggest that both aspects of glucocorticoid rhythmicity are preserved among mammalian species and are important for brain function. The central nervous system is exposed to both aspects of the hormonal rhythm and has developed mechanisms able to perceive them and translate them to differential cellular events, genomic and non-genomic. Thus, glucocorticoid rhythmicity regulates various physiological neural and glial processes, under baseline and stressful conditions, and hormonal dysrhythmicity has been associated with cognitive and behavioural defects. This raises a number of clinical implications concerning (i) glucocorticoid involvement in neuropsychiatric disease and (ii) improving the therapeutic efficacy or expanding the role of glucocorticoid-based treatments in such conditions.


Sign in / Sign up

Export Citation Format

Share Document