Thymosins β-4 and β-10 are expressed in bovine ovarian follicles and upregulated in cumulus cells during meiotic maturation

2010 ◽  
Vol 22 (8) ◽  
pp. 1206 ◽  
Author(s):  
Mohamad Salhab ◽  
Pascal Papillier ◽  
Christine Perreau ◽  
Catherine Guyader-Joly ◽  
Joelle Dupont ◽  
...  

β-Thymosins are small proteins that regulate the actin cytoskeleton and are involved in cell motility, differentiation, the induction of metalloproteinases, in anti-inflammatory processes and tumourigenesis. However, their roles in the ovary have not yet been elucidated. Using transcriptomics and real time reverse transcription–polymerase chain reaction validation, the present study demonstrates that thymosin β-4 (TMSB4) and thymosin β-10 (TMSB10) are upregulated in bovine cumulus cells (CCs) during in vitro maturation of cumulus–oocyte complexes (COCs) in parallel with an increase in mRNA expression of HAS2, COX2 and PGR genes. Using immunocytochemistry, both proteins were found to be localised mainly in granulosa cells, CCs and oocytes, in both the cytoplasm and nucleus, as well as being colocalised with F-actin stress fibres in CCs. Using different maturation mediums, we showed that the expression of TMSB10, but not TMSB4, was positively correlated with COC expansion and progesterone secretion and negatively correlated with apoptosis. Immunofluorescence, coupled with terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL), demonstrated the absence of TMSB4 and/or TMSB10 in apoptotic cells. TMSB10 expression was higher in COCs matured in vivo than in vitro, and differences related to the age of the animal were observed. TMSB4 and/or TMSB10 expression was unchanged, whereas HAS2 overexpressed in CCs from oocytes that developed to the blastocyst stage in vitro compared with those that did not. Thus, TMSB4 and/or TMSB10 ovarian expression patterns suggest that these two thymosins may be involved in cumulus modifications during maturation.

Author(s):  
V. Vergos ◽  
A. Gordon ◽  
M. Gallagher ◽  
I. Gordon

A previous report from this laboratory dealt with the establishment of pregnancies in the early months of gestation after the non-surgical transfer of cattle embryos derived from the in vitro maturation (IVM) of primary bovine oocytes, their fertilization in vitro (IVF) and their subsequent development to the transferable stage (morula/blastocyst) using an in vivo (sheep oviduct) culture system (Lu et al.,1987). The present report deals with some factors affecting the efficiency of IVF and with the culture in vitro of zygotes to the morula/ blastocyst stage of development. Some embryos were frozen and after thawing transferred by non-surgical procedures to five recipient cattle to obtain information on their capacity to undergo further embryonic development.Primary oocytes, enclosed in cumulus cells, were recovered from vesicular follicles (2-6mm) after their dissection from the ovaries of heifers slaughtered at a local abattoir. The ovaries were brought to the laboratory within one hour of animal slaughter in medium held at 35'C.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 462 ◽  
Author(s):  
George Ramirez ◽  
Jaime Palomino ◽  
Karla Aspee ◽  
Monica De los Reyes

The competence to undergo expansion is a characteristic of cumulus cells (CCs). The aim was to investigate the expression of GDF-9 and BMP-15 mRNA in canine cumulus cells in relation to cumulus expansion and meiotic development over the estrous cycle. CCs were recovered from nonmatured and in vitro-matured (IVM) dog cumulus oocyte complexes (COCs), which were obtained from antral follicles at different phases of the estrous cycle. Quantitative real-time polymerase chain reaction (q-PCR) was used to evaluate the relative abundance of GDF-9 and BMP-15 transcripts from the CCs with or without signs of expansion. The results were evaluated by ANOVA and logistic regression. The maturity of the oocyte and the expansion process affected the mRNA levels in CCs. There were differences (p < 0.05) in GDF-9 and BMP-15 gene expression in CCs isolated from nonmatured COCs when comparing the reproductive phases. Lower mRNA levels (p < 0.05) were observed in anestrus and proestrus in comparison to those in estrus and diestrus. In contrast, when comparing GDF-9 mRNA levels in IVM COCs, no differences were found among the phases of the estrous cycle in expanded and nonexpanded CCs (p < 0.05). However, the highest (p < 0.05) BMP-15 gene expression in CCs that did not undergo expansion was exhibited in anestrus and the lowest (p < 0.05) expression was observed in estrus in expanded CCs. Although the stage of the estrous cycle did not affect the second metaphase (MII )rates, the expanded CCs obtained at estrus coexisted with higher percentages of MII (p < 0.05). In conclusion, the differential expression patterns of GDF-9 and BMP-15 mRNA transcripts might be related to cumulus expansion and maturation processes, suggesting specific regulation and temporal changes in their expression.


2008 ◽  
Vol 20 (1) ◽  
pp. 204
Author(s):  
R. Oishi ◽  
Y. Isaji ◽  
H. Imai ◽  
M. Yamada

The high level of cyclic adenosine monophosphate (cAMP), which is provided to the oocytes from cumulus cells via gap junctional complexes in cumulus-enclosed oocytes (CEOs), is known to contribute to meiotic arrest at the germinal vesicle (GV) stage of CEOs. However, whether intraoocyte cAMP during the period of in vitro maturation (IVM) affects postfertilization developmental competence of mouse oocytes still remains unclear. The aim of this study was to examine the effects of FSH or dibutyryl cAMP (dbcAMP) treatment during IVM on in vitro development of mouse oocytes after in vitro fertilization (IVF). Whether a junctional association between cumulus cells and the oocyte would be essential for a cytoplasmic maturation-promoting effect was also examined. CEOs were isolated from and eCG-primed 3-week-old ICR mouse by rupturing preovulatory follicles with needles in M16 medium with 5% FCS and essential and nonessential amino acids (basal medium). IVM media used were basal medium without (control) or with 100 µm dbcAMP or 1 IU mL–1 FSH. Carbenoxolone (100 µm, CBX), an inhibitor of gap junction, was used to inhibit a junctional association between cumulus cells and the oocyte. Denuded oocytes (DOs) were prepared by repeatedly pipetting in basal medium with 0.2% hyaluronidase. CEOs and DOs were cultured in IVM media at 37�C under 5% CO2 in air for 16.5 h, and then transferred to TYH medium (a modified Krebs-Ringer bicarbonate medium) containing 0.4% BSA, followed by insemination with capacitated sperm. After 6 h of IVF, inseminated oocytes were cultured in KSOM medium with 0.3% BSA. Development to the 2-cell and blastocyst stages was estimated at 24 h and 120 h after IVF, respectively. All experiments were done in 3 replicates, and the statistical analysis was carried out by ANOVA and Fisher's protected least-squares difference (PLSD) test. When CEOs were matured in IVM media, the rates of postfertilization development to the 2-cell and blastocyst stages of oocytes matured in the control medium were very low(29% and 13%, respectively), whereas those of oocytes matured with FSH or dbcAMP significantly increased (FSH: 61% and 52%, dbcAMP: 63 and 57%, respectively, v. control; P < 0.05). Next, when CEOs were matured in basal medium with 1 IU mL–1 FSH and 100 µm CBX, the developmental rate to the 2-cell stage (56%) was similar to that in medium with FSH alone (61%) but the rate to the blastocyst stage (40%) was little lower compared with that in medium with FSH alone (52%), although not significantly different (P > 0.05). Furthermore, when DOs were matured in IVM media, the developmental rates to the blastocyst stage after IVF of the oocytes matured with FSH or dbcAMP significantly increased (FSH: 25%, dbcAMP: 15%; P < 0.05) compared with those in control medium (7%). Taken together, it is suggested that increasing the concentration of intraoocyte cAMP during the IVM period is important to improve the developmental competence after IVF of mouse oocytes, and that the competence is acquired in part in a cumulus-oocyte junctional communication-independent manner.


2017 ◽  
Vol 29 (1) ◽  
pp. 202 ◽  
Author(s):  
A. Lange-Consiglio ◽  
C. Perrini ◽  
P. Esposti ◽  
F. Cremonesi

The in vitro maturation of canine oocyte is problematic because it is difficult to reproduce the oviducal microenvironment where the in vivo maturation occurs. Because cells are able to communicate with each other by paracrine action, oviducal cells could be in vitro cultivated to obtain the conditioned medium (CM) consisting of soluble factors and microvesicles (MV), which represent a carrier for nonsoluble molecules including microRNA. The aim of the present work was to investigate the effect of the addition of CM or MV, secreted by oviducal cells, to the canine in vitro maturation medium. To generate CM, cells from oviducts of 3 animals in late oestrus were cultured for 5 days at 38.5°C in a humidified atmosphere of 5% CO2. Supernatants were collected, pooled, centrifuged at 2500 × g, and stored at −80°C. Microvesicles were obtained by ultracentrifugation of CM at 100,000 × g for 1 h at 4°C and measured for concentration and size by a Nanosight instrument. Ovaries were obtained from 50 healthy domestic bitches (1–4 years old) of different breeds that underwent ovariectomy regardless of the oestrous cycle. Cumulus-oocyte complexes were released by slicing the ovarian cortex with a scalpel blade, and only Grade 1 cumulus-oocyte complexes (darkly granulated cytoplasm and surrounded by 3 or more compact cumulus cell layers) 110 to 120 µm in diameter were selected for culture. Maturation was performed at 38.5°C in a humidified atmosphere of 5% CO2 and 5% of O2 in bi-phasic systems: 24 h in SOF with 5.0 μg mL−1 of LH followed by 48 h in SOF supplemented with 10% of oestrous bitch serum and 10% CM or 50, 75, 100, or 150 × 106 MV mL−1 labelled with PKH-26. Control was the same medium without CM or MV. Oocytes were observed under a fluorescent microscope to detect metaphase II (MII), by Hoechst staining, and the incorporation of MV. Statistical analysis was performed by chi-square test. Results show that canine oviducal cells secreted MV of 234 ± 23 nm in size, underling that these MV fall within the shedding vesicles category. The incorporation of labelled MV occurred at first in cumulus cells, at 48 h of maturation, and then, at 72 h, in oocyte cytoplasm. These MV had a positive effect on maturation rate (MII) at the concentration of 75 and 100 × 106 MV mL−1 compared with CM and control (20.34 and 21.82 v. 9.09 and 3.95%, respectively). The concentration of 150 × 106 MV mL−1 provided only 9.26% of MII. To understand the role of MV, we assessed the expression of 3 microRNA (miRNA-30b, miR-375, and miR-503) that are involved in some key pathways (WNT, MAPK, ERbB, and TGFβ) regulating follicular development and meiotic resumption. The lower rate of MII with the higher concentration of MV is possibly due to the high level of miR-375, which recent literature shows to suppress the TGFβ pathway, leading to impaired oocyte maturation. In conclusion, the oviducal MV, or specific microRNA, are involved in cellular trafficking during oocyte maturation, and their possible use in vitro could facilitate the exploitation of canine reproductive biotechnologies.


2001 ◽  
Vol 170 (3) ◽  
pp. 565-573 ◽  
Author(s):  
F Khamsi ◽  
S Roberge

There are two types of granulosa cells: those which surround the oocyte are cumulus cells (CC) and those which surround the antrum are mural granulosa cells (MGC). These cells are under the influence of several hormones and growth factors, the most important of which are gonadotrophins and IGF-I. In this article, we report novel observations on the differences between these two types of granulosa cells and their interaction with gonadotrophins and IGF-I. We were able to conduct physiological studies on the role of IGF-I by using an analogue of IGF-I which does not bind to IGF-I-binding proteins (LR3-IGF-I). Immature rats received saline, equine chorionic gonadotrophin (eCG), LR3-IGF-I or eCG plus LR3-IGF-I by infusion using a pump from 24-29 days of age. The rats were killed and the ovaries removed. Surface follicles were punctured and MGC and oocyte cumulus complexes were removed. These were cultured in saline (control) and in three different doses of FSH. Cell replication was assessed by 3H-thymidine incorporation and differentiation was evaluated by the measurement of progesterone secretion. It was noted that CC replicated ten times more than MGC. Similarly, progesterone secretion by CC was six times more than by MGC. In vivo exposure to gonadotrophins (eCG) positively influenced in vitro treatment with FSH in both cell types. This phenomenon was observed in both cell replication and progesterone secretion. The IGF-I analogue had a positive effect on cell replication of MGC but a negative effect on the cell replication of CC. With respect to progesterone secretion, the IGF-I analogue had a negative effect on CC but a positive effect on MGC. In conclusion, CC behaved differently from MGC in response to gonadotrophins and the IGF-I analogue. IGF-I and FSH acted additively, synergistically or antagonistically in different circumstances.


Reproduction ◽  
2006 ◽  
Vol 131 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Hakan Sagirkaya ◽  
Muge Misirlioglu ◽  
Abdullah Kaya ◽  
Neal L First ◽  
John J Parrish ◽  
...  

Expression of embryonic genes is altered in different culture conditions, which influence developmental potential both during preimplantation and fetal development. The objective of this study was to define the effects of culture conditions on: bovine embryonic development to blastocyst stage, blastocyst cell number, apoptosis and expression patterns of a panel of developmentally important genes. Bovine embryos were culturedin vitroin three culture media containing amino acids, namely potassium simplex optimization medium (KSOMaa), Charles Rosenkrans 1 (CR1aa) and synthetic oviductal fluid (SOFaa). Apoptosis in blastocysts was determined by TUNEL assay and expression profiles of developmentally important genes were assayed by real-time PCR.In vivo-produced bovine blastocysts were used as controls for experiments determining gene expression patterns. While the cleavage rates did not differ, embryos cultured in SOFaa had higher rates of development to blastocyst stage (P< 0.05). Mean cell numbers and percentages of apoptotic cells per blastocyst did not differ among the groups. Expression of the heat shock protein 70 (Hsp70) gene was significantly up-regulated in both CR1aa and KSOMaa when compared with SOFaa (P< 0.001). DNA methyltransferase 3a (Dnmt3a) expression was higher in embryos cultured in CR1aa than in those cultured in SOFaa (P< 0.001). Expression of interferon tau (IF-τ) and insulin-like growth factor II receptor (Igf-2r) genes was significantly up-regulated in KSOMaa when compared with CR1aa (P< 0.001). Gene expression did not differ betweenin vivo-derived blastocysts and theirin vitro-derived counterparts. In conclusion, SOFaa supports higher development to blastocyst stage than KSOMaa and CR1aa, and the culture conditions influence gene expression.


2007 ◽  
Vol 19 (1) ◽  
pp. 256
Author(s):  
W. J. Son ◽  
M. K. B. ◽  
Y. J. Jeong ◽  
S. Balasubramanian ◽  
S. Y. Choe ◽  
...  

Various factors are known to influence the survival and development of in vitro-produced embryos, including co-culture with somatic cells, antioxidants, and O2 tension. Studies in several species report that embryo development and quality were enhanced at low O2 concentrations. This study compared the effects of 2 O2 concentrations on IVP embryo development, embryo quality, and gene expression to those of in vivo counterparts. Cumulus–oocyte complexes were matured in vitro in TCM-199 with hormones and 10% FCS, and inseminated in TALP medium. Presumptive zygotes were cultured in SOF medium under either 5% or 20% O2 in air. In triplicate, sets of 5 embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula, and Day 7 blastocyst stages were used for analyzing the expression patterns of apoptotic (Bax and Bcl2), metabolism (Glut-1 and Glut-5), stress (Sox, Hsp70, and G6PDH), compaction (Cx43), oxidation (PRDX5, NADH, and MnSOD), and implantation (VEGF and IFN-tau) genes using real-time quantitative PCR. The expression of each gene was normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Statistical analysis was performed with Bonferroni and Duncan tests by ANOVA (P &lt; 0.05). Cleavage rates did not differ among groups. Blastocyst and hatched blastocyst development in 5% O2 was significantly (P &lt; 0.05) higher than in 20% O2. Total cell number of in vivo blastocysts was significantly (P &lt; 0.05) higher than that of IVP blastocysts. ICM ratio and apoptosis of in vivo blastocysts were significantly (P &lt; 0.05) lower than for IVP blastocysts. The relative abundances (RAs) of Glut-1, Glut-5, MnSOD, NADH, PRDX5, Cx43, Bcl2, and IFN-τ were significantly (P &lt; 0.05) higher in in vivo embryos, whereas the RAs of Sox, G6PDH, Hsp70, Bax, and VEGF were significantly (P &lt; 0.05) lower than for IVP counterparts. In conclusion, culture at 5% O2 concentration resulted in higher rates of development to the blastocyst stage, higher total cell numbers, and decreased apoptosis. Furthermore, differences in expression of genes including Glut-1, Glut-5, Sox, G6PDH, Hsp70, Bax, Bcl2, Cx43, PRDX5, NADH, MnSOD, VEGF, and IFN-τ may prove useful in determining optimal culture conditions. This work was supported by ARPC (204119-03-SB010), Republic of Korea.


2005 ◽  
Vol 17 (2) ◽  
pp. 162
Author(s):  
S. Akagi ◽  
B. Tsuneishi ◽  
S. Watanabe ◽  
S. Takahashi

It has been reported that aggregation of two nuclear transfer (NT) mouse embryos shows an improvement in full-term development (Boiani M et al. 2003 EMBO J. 22, 5304–5312). In this study, we examined the effect of aggregation on in vitro development of bovine NT embryos. As donor cells for NT, cumulus cells of passage 3–5 were used following culture in serum-starved medium for 5–7 days. NT was performed as previously described (Akagi S et al. 2003 Mol. Reprod. Dev. 66, 264–272). NT embryos were cultured in a serum-free medium (IVD-101, Research Institute of Functional Peptide Co., Ltd., Shimojo, Yamagat, Japan). Eight-cell-stage embryos on Day 2 or 16- to 32-cell-stage embryos on day 4 were used for embryo aggregation after removal of the zona pellucida. A small depression was made in a 25-μL drop of TCM-199 with 50 μg/mL phytohemagglutinin (TCM199/PHA) or IVD-101 using a darning needle. Two or three NT embryos were placed into the depression in the drop of TCM199/PHA for 20 min. NT aggregates were then moved into the depression in the drop of IVD-101 and cultured until Day 7. In vitro development of NT aggregates was summarized in Table 1. There were no differences in the cell number and ICM ratio of blastocysts between non-aggregated zona-intact and zona-free embryos. All aggregates of three NT embryos developed to the blastocyst stage and the cell number of these blastocysts was significantly higher than that of non-aggregated NT blastocysts. These results indicate that removal of the zona pellucida does not affect the cell number and ICM ratio of blastocysts and that aggregates of three NT embryos can develop to blastocysts with high cell numbers which are equivalent to in vivo-derived embryos (166 ± 11, Knijn HM et al. 2003 Biol. Reprod. 69, 1371–1378). Table 1. Development, cell number, and ICM ratio of NT aggregates


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 838
Author(s):  
Paulina Lipinska ◽  
Ewa Sell-Kubiak ◽  
Piotr Pawlak ◽  
Zofia Eliza Madeja ◽  
Ewelina Warzych

Glucose or fatty acids (FAs) metabolisms may alter the ovarian follicle environment and thus determine oocyte and the nascent embryo quality. The aim of the experiment was to investigate the effect of selective inhibition of glucose (iodoacetate + DHEA) or FA (etomoxir) metabolism on in vitro maturation (IVM) of bovine COCs (cumulus–oocyte complexes) to investigate oocyte’s development, quality, and energy metabolism. After in vitro fertilization, embryos were cultured to the blastocyst stage. Lipid droplets, metabolome, and lipidome were analyzed in oocytes and cumulus cells. mRNA expression of the selected genes was measured in the cumulus cells. ATP and glutathione relative levels were measured in oocytes. Changes in FA content in the maturation medium were evaluated by mass spectrometry. Our results indicate that only glucose metabolism is substantial to the oocyte during IVM since only glucose inhibition decreased embryo culture efficiency. The most noteworthy differences in the reaction to the applied inhibition systems were observed in cumulus cells. The upregulation of ketone body metabolism in the cumulus cells of the glucose inhibition group suggest possibly failed attempts of cells to switch into lipid consumption. On the contrary, etomoxir treatment of the oocytes did not affect embryo development, probably due to undisturbed metabolism in cumulus cells. Therefore, we suggest that the energy pathways analyzed in this experiment are not interchangeable alternatives in bovine COCs.


2004 ◽  
Vol 16 (2) ◽  
pp. 168
Author(s):  
C. Diez ◽  
M. Carbajo ◽  
L. Fernandez ◽  
C.O. Hidalgo ◽  
S. de la Varga ◽  
...  

Mammalian oocytes remain one of the most difficult cell types to successfully cryopreserve. The in vitro-maturation protocols (IVM) have a large impact on the oocyte maturation. Consequently, inhibition of meiosis has been used to improve developmental competence of oocytes without reducing blastocyst rates. Moreover, the meiotic stage influences the ability of oocytes to survive cryopreservation. This work analyzes the effect of the inhibition of meiosis (prematuration) on the freezability of the bovine oocyte. Cumulus-oocyte complexes (COCs) were recovered from slaughterhouse ovaries. Inmature oocytes (I) with compact cumulus and evenly granulated cytoplasm were selected. Prematuration (PM) was performed by incubating COCs for 22h in TCM199 NaHCO3 and roscovitine 25μM. IVM was accomplished in TCM199 NaHCO3, 10% FCS, FSH-LH and 17β-estradiol. Oocytes were subjected to 5 treatments prior the vitrification (see table). COCs were partially denuded from cumulus cells and vitrified/warmed using the OPS system (Vajta et al. 1998 Mol. Reprod. Dev. 51, 53–58). Warmed oocytes were fertilized (Day 0) and presumptive zygotes having a normal morphological appearance were cultured in SOFaa+5% of FCS (Day 3); elements with degenerated appearance were discarded and recorded. Fresh oocytes submitted to IVM (c-M) or prematured and matured (c-PM+M) were fertilized and cultured as controls. Data were analyzed by ANOVA and Duncan’s multiple range test and expressed as LSM±SE. Developmental data are referred to the zygotes cultured. Only oocytes vitrified after IVM reached the blastocyst stage, but at lower rates than fresh controls. However, no differences were found between treatments at any developmental stage. Oocytes vitrified both as prematured+matured and immature oocytes showed increased proportions (P&lt;0.01) of degenerated oocytes (37.3±5.9 and 49.9±5.9, respectively), as compared with oocytes matured before vitrification (17.6±5.9). These results show that effects induced by incubation with roscovitine (Lonergan et al. 2003 Mol. Reprod. Dev. 64, 369–378) in combination with cryodamage compromise the oocyte developmental ability. Supported by CICYT, AGL2001-379.


Sign in / Sign up

Export Citation Format

Share Document