Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst

2012 ◽  
Vol 24 (6) ◽  
pp. 804 ◽  
Author(s):  
Natalie K. Binder ◽  
Megan Mitchell ◽  
David K. Gardner

Maternal obesity results in reproductive complications, whereas the impact of paternal obesity is unclear. In the present study, the effects of parental obesity on preimplantation embryo cell cycle length and carbohydrate utilisation were investigated. Maternal and paternal obesity were assessed independently by deriving zygotes from normal or obese C57BL/6 female mice mated with normal Swiss male mice (maternal obesity), or from normal Swiss female mice mated with normal or obese C57BL/6 male mice (paternal obesity). Zygotes were cultured in vitro and development was then assessed by time-lapse microscopy and metabolism determined using ultramicrofluorescence. Maternal obesity was associated with a significant delay in precompaction cell cycle kinetics from the 1-cell stage. A significant increase in glucose consumption by embryos from obese compared with normal females occurred after compaction, although glycolysis remained unchanged. Similarly, paternal obesity led to significant delays in cell cycle progression during preimplantation embryo development. However, this developmental delay was observed from the second cleavage stage onwards, following embryonic genome activation. Blastocysts from obese males showed disproportionate changes in carbohydrate metabolism, with significantly increased glycolysis. Overall, metabolic changes were not inhibitory to blastocyst formation; however, blastocyst cell numbers were significantly lower when either parent was obese. These data suggest that both maternal and paternal obesity significantly impacts preimplantation embryo physiology.

2008 ◽  
Vol 20 (9) ◽  
pp. 57
Author(s):  
Y. Li ◽  
M. L. Day ◽  
C. O.'Neill

Platelet activating factor (paf) is an autocrine survival factor for preimplantation embryo. Binding of paf to its receptor activates PI3kinase, causing an IP3-dependent release of Ca2+ from intracellular stores as well as activation of Ca2+ influx via a dihydropyridine-sensitive Ca2+ channel. These actions result in the generation of a defined intracellular calcium ([Ca2+]i) transient in the 2-cell embryo[1]. By using combined whole-cell patch-clamp and real-time [Ca2+]i analyses, we have shown that paf also induces a concomitant hyperpolarisation of the membrane potential in 2-cell embryos, accompanied by an increased net outward ion current. Both the membrane hyperpolarisation and outward current were dependent upon the occurrence of the paf-induced [Ca2+]i transient[2]. The aim of this study was to investigate the characteristics of the paf-induced outward current in 2-cell embryos and to assess whether it has a role in normal mouse preimplantation development. We show that: (1) removal of extracellular anions or treatment with niflumic acid (NFA, 100 μM, a Ca2+-activated Cl- channel blocker) prevented activation of the outward current by paf but had no effect on the paf-induced [Ca2+]i transient; and (2) The culture of embryos with NFA (100 μM) from the 1-cell to late 2-cell stage significantly reduced their development to the blastocyst stage (P < 0.001), but treatment with NFA from the late 2-cell stage had no effect on development. The results show that paf induces an increase in [Ca2+]i which in turn activates a Ca2+-activated Cl- channel. The activity of this NFA-sensitive channel during the zygote to 2-cell stage is required for normal embryo development. (1) C. O’Neill (2008) The potential roles of embryotrophic ligands in preimplantation embryo development. Hum Reprod Update 14:275–288. (2) Y. Li, M.L. Day & C. O’Neill (2007) Autocrine activation of ions currents in the two-cell mouse embryo. Exp Cell Res. 313:2785–2794.


2010 ◽  
Vol 22 (9) ◽  
pp. 89
Author(s):  
N. K. Binder ◽  
M. Mitchell ◽  
D. K. Gardner

Parental obesity impacts reproductive success and often results in gestational complications. In this study the effects of maternal and paternal obesity on preimplantation embryo quality were investigated through analysis of cell cycle length and carbohydrate utilisation. Zygotes derived from matings of lean or obese C57BL/6J mice were used to evaluate separately maternal and paternal obesity. Embryos were cultured individually, and development monitored with high temporal time-lapse microscopy (every 15 min). After 78 h of culture, glucose consumption and lactate production by expanded blastocysts was determined using ultramicrofluorimetry. Maternal obesity was associated with a significant delay (P < 0.01) in pre-compaction cell cycle length of approximately 1.5 h. Post-compaction there was a significant increase (P < 0.05) in glucose consumption by embryos from obese mothers compared to control embryos, while the glycolytic rate was unchanged. Paternal obesity was associated with a significant cell cycle delay (P < 0.05) of approximately 1h from the second cleavage stage onwards. Resultant blastocysts showed disproportionate changes in carbohydrate metabolism, with a significantly increased (P < 0.05) glycolytic rate compared to control embryos. Metabolic changes were still permissive to blastocyst formation, however cell numbers were significantly reduced (P < 0.001) with both maternal (lean: 54.2 ± 0.8 vs obese: 48.4 ± 1.0) and paternal (lean: 60.5 ± 0.09 vs obese: 50.9 ± 0.09) obesity. These data will help to determine the impact of parental obesity on preimplantation embryo physiology. Slow embryonic development and high glycolytic rate have been linked to reduced implantation rates and are general indicators of compromised embryo quality.


Reproduction ◽  
2016 ◽  
Vol 152 (4) ◽  
pp. 283-291 ◽  
Author(s):  
Christiana Kyvelidou ◽  
Dimitris Sotiriou ◽  
Tania Antonopoulou ◽  
Margarita Tsagkaraki ◽  
George J Tserevelakis ◽  
...  

l-Carnitine (l-Cn), despite the beneficial role as energy-generating substance delivering long-chain fatty acids to the β-oxidation pathway in mitochondria, has been accused to cause an endometriosis-like state to BALB/c mice manifested by increased inflammatory cytokines in serum and peritoneal fluid, accumulation of immune cells in the peritoneal cavity and uterine walls and most importantly, correlating to infertility. Exploring this type of infertility, the effect of l-Cn on preimplantation embryo development, ovarian integrity and systemic maternal immunity was studied. Using nonlinear microscopy analysis, which was shown to be a powerful tool for determining embryo quality by quantitatively estimating the lipid body (LB) content of the cells, it was shown that in vitro and in vivo administration of l-Cn significantly decreased LB mean area in zygotes. Daily intraperitoneal administration of 2.5mg l-Cn for 3, 4 and 7days to mice significantly decreased the percent of normal zygotes. However, only the 7-day treatment persisted by affecting 2- and 8-cell stage embryos, while almost abolishing blastocyst development. Such effects were accompanied by abnormal ovarian histology, showing increased numbers of corpora luteus and elevated progesterone concentration in the serum. In addition, it was shown that the 7-day l-Cn treatment pushed maternal systemic immunity toward inflammation and immunosuppression by increasing CD11b-, CD25- and CD11bGr1-positive cells in spleen, which opposed the necessity for immunostimulation at these early stages of pregnancy. In conclusion, the results presented here demonstrated that elevated doses of l-Cn affect early stages of embryo development, leading to infertility.


2010 ◽  
Vol 22 (1) ◽  
pp. 180
Author(s):  
R. G. Blaza ◽  
J. E. Oliver ◽  
B. Oback ◽  
D. N. Wells

We hypothesized that reprogramming a somatic cell following NT is a time-dependent process that can be improved by artificially prolonging the first cell cycle of the cloned embryo. Eleven candidate drugs were initially screened for their ability to reversibly delay the onset of the first cleavage in bovine parthenotes without affecting subsequent in vitro embryo development. After identifying the cyclin-dependent kinase inhibitor butyrolactone-1 (BLT1; BIOMOL International, Plymouth Meeting, PA, USA) as a suitable candidate, we determined its optimal concentration and exposure time. We then performed zona-free bovine NT with serum-starved male skin fibroblasts. Commencing 10 h after the start of IVC, reconstructed 1-cell embryos were treated with either 200 μM BLT1 or 0.4% DMSO in SOF culture medium for 8 to 11 h. After thorough washing, cleavage rates were recorded and culture continued until Day 7. Labeling with 5-bromo-2-deoxyuridine (BrdU) was used to determine DNA replication during the first cell cycle. Some embryos were also transferred singularly to recipient cows. Embryo development was analyzed by a generalized linear model with binomial variation and pregnancy rates by Fisher’s exact test. At 0, 2, 4, 6, and 10 h after the start of IVC, 0% (0/28), 8% (5/61), 67% (39/58), 90% (54/60), and 100% (16/16), respectively, of NT reconstructs had incorporated BrdU, indicating that all 1-cell NT embryos were in S-phase at the start of treatment. After 8 to 11 h of incubation in BLT1, only 28% (119/429) of NT embryos had cleaved, compared with 93% of DMSO-treated controls (297/319). After removing BLT1 in those embryos arrested at the 1-cell-stage, there was no BrdU incorporation over the subsequent 1 h (0/17), embryos entered mitosis and by 4 h, 90% had cleaved (86/96). Thus, BLT1-arrested embryos were at a post-replicative stage prior to M-phase. Rates of in vitro embryo development on Day 7, from late morula to expanded blastocyst stages, of either grade 1-3 or grade 1-2 quality, in the BLT1 treatment were not different compared with controls (129/275 = 47% v. 151/309 = 49% and 33% v. 33%, respectively). Nuclei counts in expanded blastocysts from the BLT1 treatment were not significantly different than controls (109 v. 121, n = 31). Embryo survival on Day 35 of pregnancy and for calves to 1 month ofage was also not different between BLT1 and control treatments (13/31 = 42% v. 12/29 = 41% and 6% v. 10%, respectively). In conclusion, treating 1-cell NT embryos in S-phase for 8 to 11 h with 200 μM BLT1 arrested embryos in G2 and delayed cleavage by approximately 6 h. Cell cycle arrest was fully reversible after drug withdrawal, with rates of cleavage and in vitro development comparable to that of controls. The prolongation of the first cell cycle in bovine NT embryos using this method did not, however, increase cloning efficiency. Arrest for longer periods, at other stages of the cell cycle, and using alternative reagents may be beneficial.


2021 ◽  
pp. 1-5
Author(s):  
Jason E. Swain

With continued improvements in blastocyst culture, cell sampling approaches, and genetic analysis platforms, the resulting improvements in embryo development and the resolution and accuracy of chromosome analysis have provided valuable insights into the preimplantation embryo. This includes the impact of in vitro culture conditions on chromosomal dynamics. Specifically, through analysis of embryo aneuploidy and mosaicism, a growing number of reports indicate that rates of chromosomal abnormalities can vary between IVF centers. Because differences in mosaicism reflect mitotic errors, this endpoint analysis suggests that IVF laboratory-controlled variables during embryo development may be influencing chromosome separation and segregation. A growing body of literature suggests that culture media may be one variable influencing preimplantation embryo aneuploidy and mosaicism. However, these data are far from definitive in demonstrating cause-and-effect. Whether reported differences may be due to media formulation, use of sequential media or single-step media, or uninterrupted culture approaches is unknown. Importantly, variables directly impacting media performance and embryo development, including pH, temperature, osmolality, and oxygen concentration, must also be considered and make it difficult to isolate the impact of culture media as the sole factor responsible. These IVF laboratory variables will be reviewed and literature suggesting a possible link to mitotic aneuploidy/mosaicism will be discussed.


Author(s):  
E S van Marion ◽  
J P Speksnijder ◽  
J Hoek ◽  
W P A Boellaard ◽  
M Dinkelman-Smit ◽  
...  

Abstract Testicular sperm is increasingly used during in vitro fertilization treatment. Testicular sperm has the ability to fertilize the oocyte after intracytoplasmic sperm injection (ICSI), but they have not undergone maturation during epididymal transport. Testicular sperm differs from ejaculated sperm in terms of chromatin maturity, incidence of DNA damage, and RNA content. It is not fully understood what the biological impact is of using testicular sperm, on fertilization, preimplantation embryo development, and postimplantation development. Our goal was to investigate differences in human preimplantation embryo development after ICSI using testicular sperm (TESE-ICSI) and ejaculated sperm. We used time-lapse embryo culture to study these possible differences. Embryos (n = 639) originating from 208 couples undergoing TESE-ICSI treatment were studied and compared to embryos (n = 866) originating from 243 couples undergoing ICSI treatment with ejaculated sperm. Using statistical analysis with linear mixed models, we observed that pronuclei appeared 0.55 h earlier in TESE-ICSI embryos, after which the pronuclear stage lasted 0.55 h longer. Also, significantly more TESE-ICSI embryos showed direct unequal cleavage from the 1-cell stage to the 3-cell stage. TESE-ICSI embryos proceeded faster through the cleavage divisions to the 5- and the 6-cell stage, but this effect disappeared when we adjusted our model for maternal factors. In conclusion, sperm origin affects embryo development during the first embryonic cell cycle, but not developmental kinetics to the 8-cell stage. Our results provide insight into the biological differences between testicular and ejaculated sperm and their impact during human fertilization.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
P Dolati ◽  
M J Zamiri ◽  
A Akhlaghi ◽  
Z Jahromi

Abstract Study question Does quercetin (75 or 100 mg/kg BW/day) co-administration with lead acetate to male mice affects embryonic development in female mice? Summary answer The low-dose quercetin (75 mg/kg BW/day) ameliorated the adverse effects of lead acetate on mouse embryogenesis. What is known already Lead causes male infertility by impacting on endocrine system and spermatogenesis, and may exert undesirable effects on the offspring. The currently approved treatment for lead poisoning is the use of chelating agents, which form an insoluble complex with lead and shield it from biological targets; thus, reducing its toxicity. One of the main mechanisms of lead-induced toxicity is oxidative stress, and it has been reported that natural antioxidants can reduce the heavy metals toxicity. The aim of the present study was to examine the protective effects of quercetin on the toxicity induced by lead acetate on the embryogenesis in mice. Study design, size, duration Sexually mature (eight-week-old) NMRI male mice (n = 24) were randomly divided into four groups (n = 6 per group) receiving (i) distilled water (control group); (ii) lead acetate (150 mg/kg BW/day) dissolved in deionized water (LA); (iii) lead acetate (150 mg/kg BW/day) + quercetin (75 mg/kg BW/day) (LQ75); (IV) lead acetate (150 mg/kg BW/day) + quercetin (100 mg/kg BW/day) (LQ100). Treatments were applied daily as oral gavages for one cycle of the seminiferous epithelium (35 days). Participants/materials, setting, methods At the end of treatment administration, the males were joined with super-ovulated females, and the retrieved zygotes were cultured for evaluation of the embryo development (at 2-cell, 4-cell, 8-cell, and blastocyst stages), and blastocyst cell number using differential staining (propidium iodide and bisbenzimide). After incubation of capacitated sperm with oocytes, an ultraviolet light microscope was used following 3 min incubation with 25 µg⁄mL bisbenzamide solution for fertilization assessment. Main results and the role of chance Lead acetate (LA) treatment of male mice decreased the 2-cell stage compared with the control group (P &gt; 0.05). There was no difference between control and LQ75, and between LA and LQ100. The other stages of embryonic development were not significantly affected by the treatment. Overall, early embryonic development in the control and LQ75 mice were better than LQ100 and LA mice. The number of cells in the trophectoderm and inner-cell mass were not affected by treatments. However, the total blastocyst cell number in the control was higher than in the other groups; there was no significant difference between LQ100, LQ75 and LA groups. Fertilization rate was not affected by the treatments (P &lt; 0.05). Quercetin acts as a potent antioxidant at low doses, but at high doses exerts a pro-oxidant action. According to previous reports, higher concentrations of quercetin increased apoptosis and necrosis while decreasing the activities of the antioxidant enzymes. Also, it has been suggested that quercetin might disrupt the endocrine system and interfere with Sertoli cell function and sperm motility. Limitations, reasons for caution A limitation of this study is narrow dose selection; more studies are needed to determine the effective dose of quercetin in ameliorating the lead toxicity. There are also side effects of lead-quercetin chelates such as metal redistribution, essential metal loss, accumulation and persistency in intracellular sites, and peroxidation. Wider implications of the findings: Lead administration adversely impacted on the embryogenesis; on the other hand, paternal quercetin co-administration somewhat ameliorated the adverse effects of lead on mice embryogenesis. Trial registration number Not applicable


Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 187-193 ◽  
Author(s):  
So Gun Hong ◽  
Goo Jang ◽  
Hyun Ju Oh ◽  
Ok Jae Koo ◽  
Jung Eun Park ◽  
...  

SummaryBrain-derived neurotrophic factor (BDNF) signalling via tyrosine kinase B receptors may play an important role in ovarian development and function. It has been reported that metformin elevates the activity of Tyrosine kinase receptors and may amplify BDNF signalling. The objective of this study was to investigate the effect of BDNF during in vitro maturation (IVM) and/or in vitro culture (IVC) (Experiment 1), and to evaluate the collaborative effect of BDNF and metformin treatment on the developmental competence of bovine in vitro fertilized (IVF) embryos (Experiment 2). In Experiment 1, BDNF, which was added to our previously established IVM systems, significantly increased the proportions of MII oocytes at both 10 ng/ml (86.7%) and 100 ng/ml (85.4%) compared with the control (64.0%). However, there was no statistically significant difference in blastocyst development between the control or BDNF-supplemented groups. In Experiment 2, in order to investigate the effect of BDNF (10 ng/ml) and/or metformin (10−5 M) per se, TCM-199 without serum and hormones was used as the control IVM medium. The BDNF (48.3%) and BDNF plus metformin (56.5%) significantly enhanced the proportions of MII oocytes compared with the control (34.4%). Although, BDNF or metformin alone had no effect in embryo development, BDNF plus metformin significantly improved early embryo development to the 8–16-cell stage compared with the control (16.5 vs. 5.5%). In conclusion, the combination of BDNF and metformin may have a collaborative effect during the IVM period. These results could further contribute to the establishment of a more efficient bovine in vitro embryo production system.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Jianing Li ◽  
Ailing Ji ◽  
Ryan E Temel ◽  
Deneys R van der Westhuyzen ◽  
Gregory A Graf

Objective: The ABCG5 ABCG8 (G5G8) sterol transporter is the primary mechanism for biliary cholesterol secretion, but mice maintain fecal sterol excretion in its absence. The mechanism by which mice maintain sterol excretion in the absence of this pathway is not known. Transintestinal cholesterol excretion (TICE) is an alternative pathway to hepatobiliary secretion. We investigated the impact of G5G8 deficiency on TICE in the absence of Sitosterolemia. Methods and Results: We compared both hepatobiliary and transintestinal cholesterol excretion rates in wild-type (WT) and G5G8 deficient mice of both sexes. WT and G5G8 were maintained on a plant-sterol free diet from the time of weaning to prevent the development of secondary phenotypes associated with Sitosterolemia. Biliary and intestinal cholesterol secretion rates were determined by biliary diversion with simultaneous perfusion of the proximal 10 cm of the small bowel. Among WT mice, biliary cholesterol secretion was greater in female mice compared to males. Conversely, male mice exhibited greater rates of TICE than females. As expected, WT mice had higher biliary cholesterol secretion rates than their G5G8 deficient littermates. However, the decline in biliary cholesterol secretion was far less in male mice compared to females in the absence of G5G8. In female mice, the absence of G5G8 resulted in a two-fold increase in TICE, whereas males were unaffected. Conclusion: Female mice are more dependent upon the biliary pathway for cholesterol excretion, whereas males are more dependent upon TICE. G5G8 independent pathways are present for both biliary and intestinal cholesterol secretion. Female and male mice differ in their adaptation to G5G8 deficiency in order to maintain fecal sterol excretion.


Sign in / Sign up

Export Citation Format

Share Document