scholarly journals Oxygen-regulated gene expression in murine cumulus cells

2015 ◽  
Vol 27 (2) ◽  
pp. 407 ◽  
Author(s):  
Karen L. Kind ◽  
Kimberley K. Y. Tam ◽  
Kelly M. Banwell ◽  
Ashley D. Gauld ◽  
Darryl L. Russell ◽  
...  

Oxygen is an important component of the environment of the cumulus–oocyte complex (COC), both in vivo within the ovarian follicle and during in vitro oocyte maturation (IVM). Cumulus cells have a key role in supporting oocyte development, and cumulus cell function and gene expression are known to be altered when the environment of the COC is perturbed. Oxygen-regulated gene expression is mediated through the actions of the transcription factors, the hypoxia-inducible factors (HIFs). In the present study, the effect of oxygen on cumulus cell gene expression was examined following in vitro maturation of the murine COC at 2%, 5% or 20% oxygen. Increased expression of HIF-responsive genes, including glucose transporter-1, lactate dehydrogenase A and BCL2/adenovirus E1B interacting protein 3, was observed in cumulus cells matured at 2% or 5%, compared with 20% oxygen. Stabilisation of HIF1α protein in cumulus cells exposed to low oxygen was confirmed by western blot and HIF-mediated transcriptional activity was demonstrated using a transgenic mouse expressing green fluorescent protein under the control of a promoter containing hypoxia response elements. These results indicate that oxygen concentration influences cumulus cell gene expression and support a role for HIF1α in mediating the cumulus cell response to varying oxygen.


2012 ◽  
Vol 19 (1) ◽  
pp. 7-16 ◽  
Author(s):  
L. Guzman ◽  
T. Adriaenssens ◽  
C. Ortega-Hrepich ◽  
F. K. Albuz ◽  
I. Mateizel ◽  
...  


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4544-4555 ◽  
Author(s):  
Laura N. Watson ◽  
David G. Mottershead ◽  
Kylie R. Dunning ◽  
Rebecca L. Robker ◽  
Robert B. Gilchrist ◽  
...  

In the ovarian follicle, oocyte-secreted factors induce cumulus-specific genes and repress mural granulosa cell specific genes to establish these functionally distinct cell lineages. The mechanism establishing this precise morphogenic pattern of oocyte signaling within the follicle is unknown. The present study investigated a role for heparan sulphate proteoglycans (HSPG) as coreceptors mediating oocyte secreted factor signaling. In vitro maturation of cumulus oocyte complexes in the presence of exogenous heparin, which antagonizes HSPG signaling, prevented cumulus expansion and blocked the induction of cumulus-specific matrix genes, Has2 and Tnfaip6, whereas conversely, the mural granulosa-specific genes, Lhcgr and Cyp11a1, were strongly up-regulated. Heparin also blocked phosphorylation of SMAD2. Exogenous growth differentiation factor (GDF)-9 reversed these heparin effects; furthermore, GDF9 strongly bound to heparin sepharose. These observations indicate that heparin binds endogenous GDF9 and disrupts interaction with heparan sulphate proteoglycan coreceptor(s), important for GDF9 signaling. The expression of candidate HSPG coreceptors, Syndecan 1–4, Glypican 1–6, and Betaglycan, was examined. An ovulatory dose of human chorionic gonadotropin down-regulated Betaglycan in cumulus cells, and this regulation required GDF9 activity; conversely, Betaglycan was significantly increased in luteinizing mural granulosa cells. Human chorionic gonadotropin caused very strong induction of Syndecan 1 and Syndecan 4 in mural granulosa as well as cumulus cells. Glypican 1 was selectively induced in cumulus cells, and this expression appeared dependent on GDF9 action. These data suggest that HSPG play an essential role in GDF9 signaling and are involved in the patterning of oocyte signaling and cumulus cell function in the periovulatory follicle.



2008 ◽  
Vol 20 (9) ◽  
pp. 62
Author(s):  
K. M. Gebhardt ◽  
D. Feil ◽  
M. Lane ◽  
D. L. Russell

In Australia, Assisted Reproductive Technology (ART) accounts for ~3% of births. However, the success rate remains around 65% for women under 35 years of age, hence multiple embryo transfer is frequently preferred to improve the probabiity of achieving a term pregnancy. A biochemical marker for oocyte and embryo developmental potential would augment successful pregnancy outcomes following IVF/ICSI by optimising oocyte and embryo selection, therefore increasing the number of single embryo transfers (SET) performed in ART cycles. Changes in expression levels in human cumulus cells may reflect the quality of their enclosed oocyte. We investigated cumulus cell gene expression and subsequent embryo development to find a marker of embryo quality. Paired samples of cumulus cells were collected from oocytes that progressed to embryos of either high or low grade from eleven IVF/ICSI patients. Following cumulus oocyte complex retrieval cumulus cells were trimmed from the oocyte, and all oocytes and resulting embryos were cultured and tracked individually. Cumulus cell gene expression was assessed using a real-time RT–PCR assay, measuring expression of cyclooxygenase 2 (COX2; PTGS2), Pentraxin 3 (PTX3), Versican (VCAN), Tumour Necrosis Factor Alpha Induced protein 6 (TNAIFP6; TSG6), Lactate Dehydrogenase A (LDHA), Phosphofructokinase Platelet (PFKP), Gremlin (GREM1), Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and 18S rRNA. Standard curves using plasmid subclones for each target were run to assess copy numbers of genes. Embryo morphology was assessed by an embryologist and correlated with relative gene expression. Cumulus cell gene expression was altered in cumulus cells from oocytes which subsequently developed into higher quality (Grade 1 and 2) embryos compared with cumulus cells from oocytes which developed into lower quality (Grade 3 and 4) embryos. This may lead to establishment of markers prognostic for developmental outcome, facillitating more reliable selection of higher quality embryos, increasing single embryo transfers and improving health outcomes from ART.



2017 ◽  
Vol 53 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Z Guo ◽  
MS Islam ◽  
D Liu ◽  
G Liu ◽  
L Lv ◽  
...  


2020 ◽  
Vol 41 (3) ◽  
pp. 518-526
Author(s):  
Nona Mishieva ◽  
Bella Martazanova ◽  
Khava Bogatyreva ◽  
Anna Korolkova ◽  
Anastasia Kirillova ◽  
...  


2007 ◽  
Vol 88 ◽  
pp. S66
Author(s):  
K. Greenseid ◽  
S. Jindal ◽  
M. Nihsen ◽  
J.M. Hurwitz ◽  
N.S. Santoro ◽  
...  


2015 ◽  
Vol 27 (1) ◽  
pp. 133
Author(s):  
K. Uhde ◽  
L. T. A. van Tol ◽  
T. A. E. Stout ◽  
B. A. J. Roelen

A mammalian oocyte within an ovarian follicle is surrounded by cumulus cells, together this structure is known as the cumulus-oocyte complex (COC). Cumulus cells are important for the development of the oocyte, they support the maturation process of the oocyte within the ovary and aid in sperm recognition. Because it is known that a Dicer knockout leads to infertility, microRNAs (miRNA) are focused to have an important role in oocyte development. MiRNAs are small noncoding RNA sequences that act as transcriptional regulators. Little is known about the expression of miRNA in cumulus cells or how cumulus-derived miRNA may regulate or be used to indicate the developmental competence of the maturing oocyte. Our aim was to investigate miRNA expression in oocytes and to identify and establish how specific miRNA influence the acquisition of developmental competence by bovine oocytes. Normalization of qPCR data requires stable reference genes. To this end, we tested the expression of various miRNA with respect to their ability to be used as reference miRNA for bovine cumulus cells; these included miR-103, miR-93, miR-26, let-7a, miR-191, and the small noncoding nuclear RNA U6. Cumulus-oocyte complexes were recovered from the ovaries of slaughtered cows and matured in vitro. Small samples of cumulus cells were collected from these COC before and after maturation. From the cumulus cell groups recovered at different stages, small RNA were extracted and cDNA was synthesised, followed by qRT-PCR. To identify the optimal combination of reference genes, the geNorm algorithm was used. MiR-26a and let-7a were identified as the most stably expressed miRNAs, whereas U6 showed the most variable expression levels. Future investigations are planned to identify miRNA in cumulus cells that can be used as markers for oocyte developmental competence. Using a single oocyte-embryo culture system will enable us to retrospectively relate cumulus miRNA expression to the developmental capacity of the oocyte.This work was supported by EU FP7 EpiHealthNet (N°317146).



2016 ◽  
Vol 28 (2) ◽  
pp. 160
Author(s):  
S. Lee ◽  
C. Khoirinaya ◽  
J.-X. Jin ◽  
G. A. Kim ◽  
B.-C. Lee

In vitro studies on mammalian oocytes have shown that follicular fluid-meiosis activating sterol (FF-MAS) can overcome the inhibitory effect of hypoxanthine (Hx) on the resumption of meiosis. FF-MAS, an intermediate in the cholesterol biosynthesis pathway, is converted to testis meiosis–activating sterol by a sterol Δ14-reductase. AY9944 A-7, an inhibitor of Δ14-reductase and Δ7-reductase, induces accumulation of FF-MAS by inhibiting its metabolism. The aim of this study was to evaluate the effects of AY9944 A-7 on meiotic resumption of porcine oocytes, cumulus cell expansion, and gene expression related to M-phase-promoting factor (MPF), mitogen-activated protein kinase (MAPK), and oocyte maturation in oocytes and related to cumulus expansion in cumulus cells. In experiment 1, 1136 cumulus-oocyte complexes (COCs) were cultured in IVM media with 4 different concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 in addition to a meiotic inhibitor (Hx, 4 mM) for 44 h. Oocytes treated with 10 and 20 μM AY9944 A-7 in the presence of Hx had significantly higher GVBD and M2 rates than the control group. However, 40 μM AY9944 A-7 significantly decreased GVBD and M2 rates and increased degeneration of oocytes compared with other groups. In experiment 2, 600 COCs were cultured in IVM media with 4 different concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 in the absence of Hx for 44 h. Cumulus expansion of 40 μM AY9944 A-7 treated group was significantly decreased compared with other groups. In experiment 3, we evaluate the effects of AY9944 A-7 on gene expression, and the experiment was replicated four times. Data on gene expression were analysed using Student’s t-test. Oocytes treated with 10 μM AY9944 A-7 increased expression of genes involved in MPF (Cyclin B and Cdc2), MAPK (C-mos), and oocyte maturation (GDF9 and BMP15). Cumulus cells treated with 10 μM AY9944 A-7 decreased cumulus expansion-related genes (Has2, Tnfaip6, Ptgs2, and Ptx-3). In conclusion, our results suggest that although 10 μM AY9944 A-7 decreased cumulus expansion-related genes, there was no difference in cumulus expansion and it induced meiotic resumption of porcine oocytes with increased MPF, MAPK, and oocyte maturation-related genes. Further studies are needed to evaluate the effect of AY9944 A-7 on porcine embryo development. This study was supported by Ministry Of Trade, Industry & Energy (#10048948), Korea IPET (#114059–3), Research Institute for Veterinary Science, TS Corporation, and the BK21 plus program.



Author(s):  
Aslihan Turhan ◽  
Miguel Tavares Pereira ◽  
Gerhard Schuler ◽  
Ulrich Bleul ◽  
Mariusz P Kowalewski

Abstract Various metabolic and hormonal factors expressed in cumulus cells are positively correlated with the in vitro maturation (IVM) of oocytes. However, the role of hypoxia sensing both during maturation of cumulus–oocyte complexes (COCs) as well as during the resumption of meiosis remains uncertain. HIF1alpha plays major roles in cellular responses to hypoxia, and here we investigated its role during bovine COC maturation by assessing the expression of related genes in cumulus cells. COCs were divided into the following groups: immature (control), in vitro matured (IVM/control), or matured in the presence of a blocker of HIF1alpha activity (echinomycin, IVM/E). We found an inhibition of cumulus cell expansion in IVM/E, compared with the IVM/control. Transcript levels of several factors (n = 13) were assessed in cumulus cells. Decreased expression of HAS2, TNFAIP6, TMSB4, TMSB10, GATM, GLUT1, CX43, COX2, PTGES, and STAR was found in IVM/E (P < 0.05). Additionally, decreased protein levels were detected for STAR, HAS2, and PCNA (P < 0.05), while activated-Caspase 3 remained unaffected in IVM/E. Progesterone output decreased in IVM/E. The application of PX-478, another blocker of HIF1alpha expression, yielded identical results. Negative effects of HIF1alpha suppression were further observed in the significantly decreased oocyte maturation and blastocyst rates from COCs matured with echinomycin (P < 0.05) or PX-478 (P < 0.05). These results support the importance of HIF1alpha for COC maturation and subsequent embryo development. HIF1alpha is a multidirectional factor controlling intercellular communication within COCs, steroidogenic activity, and oocyte development rates, and exerting effects on blastocyst rates.



2020 ◽  
Vol 318 (6) ◽  
pp. L1261-L1269 ◽  
Author(s):  
Andrew J. Goodwin ◽  
Pengfei Li ◽  
Perry V. Halushka ◽  
James A. Cook ◽  
Aman S. Sumal ◽  
...  

Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.



Sign in / Sign up

Export Citation Format

Share Document