Ram spermatozoa migrating through artificial mucus in vitro have reduced mitochondrial membrane potential but retain their viability

2015 ◽  
Vol 27 (5) ◽  
pp. 852 ◽  
Author(s):  
Carmen Martínez-Rodríguez ◽  
Mercedes Alvarez ◽  
Elena López-Urueña ◽  
Susana Gomes-Alves ◽  
Luis Anel-López ◽  
...  

Sperm motility in vitro is one of the most common predictors of fertility in male screening. We propose that a mucus-penetration assay can isolate a cellular subpopulation critical to reproductive success. To this end, a device was designed with three modules (sample, test and collection) and its conditions of use evaluated (length of mucus, incubation time, mucus medium, sperm concentration and position in relation to the horizontal). The number of spermatozoa migrating and the viability and acrosomal status of the spermatozoa not migrating were calculated. The second objective was to evaluate the qualitative parameters of the spermatozoa migrating in 1.6% polyacrylamide for 30 min. The number of spermatozoa migrating and the sperm motility, viability and the acrosomal and mitochondrial status of three sperm populations (fresh, not migrating and migrating) were determined. A higher number of migrating spermatozoa were observed after 60 min of incubation, but this situation adversely affected sperm quality. The methylcellulose-based test showed a significantly lower number of migrating spermatozoa than the polyacrylamide test. The position at an angle of 45° resulted in a higher number of migrating spermatozoa in the polyacrylamide-based test. The sperm counts for three consecutive assays indicated an acceptable repeatability of the method. The viability and acrosomal status of the migrating spermatozoa showed no significant changes with regard to the control when the device was placed at 45°, whereas these parameters showed lower values at 0°. The percentage of high mitochondrial membrane potential spermatozoa was significantly reduced in the population of migrating spermatozoa.

2021 ◽  
Author(s):  
Weiqi Sun ◽  
Fang Tian ◽  
Hongjie Pan ◽  
Xiuli Chang ◽  
Minjie Xia ◽  
...  

Abstract BackgroundFlurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity which evidence is limited and the mechanism is still unclear. The present study was conducted to systematically explore the male reproductive toxicity of FLC, including sperm quality, spermatogenesis process, toxicity targets and possible mechanisms. MethodsMale C57BL/6 mice aged 6-7 weeks received gavage administration of FLC (365/730 mg/kg body weight) for 28 consecutive days. Then the tissue and sperm of mice were collected for analysis. We measured the coefficient of male reproductive organs, and analyzed sperm concentration, motility, malformation rate and mitochondrial membrane potential. Spermatocyte immunofluorescence staining was performed to analyze meiosis processes. At the same time, we performed pathological staining on the testis and epididymis tissue, and performed TUNEL staining, immunohistochemical analysis and ultrastructural observation on the testicular tissue.ResultsThe results showed that FLC caused mice testicular weight reduction, dysfunction and architectural damage, but no significant adverse effect was found in epididymis. The exposure interfered with the proliferation of spermatogonia and the process of meiosis, affecting sperm concentration, motility, kinematic parameters, morphology and mitochondrial membrane potential, leading to sperm quality decline. Furthermore, mitochondrial damage and apoptosis of testicular Sertoli cells were observed in mice treated with FLC. ConclusionWe found that FLC has significant adverse effects on spermatogonia proliferation and meiosis. Meanwhile, apoptosis and mitochondrial damage may be the potential mechanism of Sertoli cell damage. Our study demonstrated that FLC could induce testicular Sertoli cell damage, leading to abnormal spermatogenesis which resulted in sperm quality decline and provided a methodological reference for related studies.


2020 ◽  
Vol 9 (5) ◽  
pp. 1373 ◽  
Author(s):  
Rosita A. Condorelli ◽  
Federica Barbagallo ◽  
Aldo E. Calogero ◽  
Rossella Cannarella ◽  
Andrea Crafa ◽  
...  

The use of inositols in endocrinological clinical practice is increasingly widespread. Most of the existing evidence concerns myoinositol (MYO), the most abundant form in nature, especially in women with polycystic ovarian syndrome. We have previously shown that MYO increases sperm motility in patients with asthenozoospermia by the increase of sperm mitochondrial membrane potential (MMP), a biofunctional sperm parameter closely associated to sperm motility. The aim of this study was to evaluate the effects of D-chiro-inositol (DCI), another biologically active isoform of inositols, on sperm MMP, as data on this matter has never been released so far. To accomplish this, semen samples from 15 patients with asthenozoospermia and 15 healthy normozoospermic men were incubated with increasing concentrations of DCI (0, 75, and 750 µg/mL) or phosphate buffer saline for 30 min. Incubation with DCI significantly improved sperm MMP at lower concentrations, and with shorter incubation length than those used in our similar MYO studies. In conclusion, these findings indicate that DCI positively impacts on sperm mitochondrial function in vitro. Studies aimed at assessing the role of DCI in the treatment of asthenozoospermia in-vivo are warranted.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3309
Author(s):  
Michal Ďuračka ◽  
Kamila Husarčíková ◽  
Mikuláš Jančov ◽  
Lucia Galovičová ◽  
Miroslava Kačániová ◽  
...  

Bacterial contamination of bovine ejaculates intended for artificial insemination may be reflected in a significant economic loss due to unsuccessful fertilization as well as health issues of the recipients. The Staphylococcus genus represents a large part of bacteriocenosis of bovine ejaculates. Therefore, this study aims to get a closer look on the effects of Staphylococcus-induced bacteriospermia under in vitro conditions on bovine sperm quality. Prior to inducing bacteriospermia, spermatozoa were separated from each ejaculate using Percoll® Plus gradient medium in order to limit the effects only to the selected bacterial species. Seven Staphylococcus species previously isolated from bovine semen were used for our experiments at a turbidity of 0.5 McFarland (equivalent to 1.5 × 108 colony-forming units per mL). The contaminated semen samples were incubated at 37 °C and at times of 0, 2, and 4 h, motility, mitochondrial membrane potential, reactive oxygen species (ROS) generation, sperm DNA fragmentation, and magnesium (Mg) and calcium (Ca) extracellular concentration were analyzed and compared with the control group (uncontaminated). The results showed no significant changes at the initial measurement. However, significant adverse effects were observed after 2 h and 4 h of incubation. Most notably, the presence of S. aureus, S. warneri, S. kloosii, and S. cohnii caused a significantly increased ROS production, leading to sperm DNA fragmentation, changes in the mitochondrial membrane potential, and a decreased sperm motility. Furthermore, the presence of Staphylococcus species led to lower extracellular concentrations of Mg and Ca. In conclusion, the overgrowth of Staphylococcus bacteria in bovine semen may contribute to oxidative stress resulting in sperm DNA fragmentation, altered mitochondrial membrane potential, and diminished sperm motility.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Miroslava Cedikova ◽  
Michaela Miklikova ◽  
Lenka Stachova ◽  
Martina Grundmanova ◽  
Zdenek Tuma ◽  
...  

Propolis is a natural product that honeybees collect from various plants. It is known for its beneficial pharmacological effects. The aim of our study was to evaluate the impact of propolis on human sperm motility, mitochondrial respiratory activity, and membrane potential. Semen samples from 10 normozoospermic donors were processed according to the World Health Organization criteria. Propolis effects on the sperm motility and mitochondrial activity parameters were tested in the fresh ejaculate and purified spermatozoa. Propolis preserved progressive motility of spermatozoa in the native semen samples. Oxygen consumption determined in purified permeabilized spermatozoa by high-resolution respirometry in the presence of adenosine diphosphate and substrates of complex I and complex II (stateOXPHOSI+II) was significantly increased in the propolis-treated samples. Propolis also increased uncoupled respiration in the presence of rotenone (stateETSII) and complex IV activity, but it did not influence state LEAK induced by oligomycin. Mitochondrial membrane potential was not affected by propolis. This study demonstrates that propolis maintains sperm motility in the native ejaculates and increases activities of mitochondrial respiratory complexes II and IV without affecting mitochondrial membrane potential. The data suggest that propolis improves the total mitochondrial respiratory efficiency in the human spermatozoa in vitro thereby having potential to improve sperm motility.


2021 ◽  
Vol 9 (2) ◽  
pp. 320
Author(s):  
Wilmer Alcazar ◽  
Sami Alakurtti ◽  
Maritza Padrón-Nieves ◽  
Maija Liisa Tuononen ◽  
Noris Rodríguez ◽  
...  

Herein, we evaluated in vitro the anti-leishmanial activity of betulin derivatives in Venezuelan isolates of Leishmania amazonensis, isolated from patients with therapeutic failure. Methods: We analyzed promastigote in vitro susceptibility as well as the cytotoxicity and selectivity of the evaluated compounds. Additionally, the activity of selected compounds was determined in intracellular amastigotes. Finally, to gain hints on their potential mechanism of action, the effect of the most promising compounds on plasma and mitochondrial membrane potential, and nitric oxide and superoxide production by infected macrophages was determined. Results: From the tested 28 compounds, those numbered 18 and 22 were chosen for additional studies. Both 18 and 22 were active (GI50 ≤ 2 µM, cytotoxic CC50 > 45 µM, SI > 20) for the reference strain LTB0016 and for patient isolates. The results suggest that 18 significantly depolarized the plasma membrane potential (p < 0.05) and the mitochondrial membrane potential (p < 0.05) when compared to untreated cells. Although neither 18 nor 22 induced nitric oxide production in infected macrophages, 18 induced superoxide production in infected macrophages. Conclusion: Our results suggest that due to their efficacy and selectivity against intracellular parasites and the potential mechanisms underlying their leishmanicidal effect, the compounds 18 and 22 could be used as tools for designing new chemotherapies against leishmaniasis.


2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


Sign in / Sign up

Export Citation Format

Share Document