Anti-fertility effects of oral medroxyprogesterone acetate in rabbits

1996 ◽  
Vol 8 (8) ◽  
pp. 1185 ◽  
Author(s):  
NO Oguge ◽  
GK Barrell

Studies on the anti-fertility effects of medroxyprogesterone acetate (MPA) were conducted in rabbits. The bioavailability of MPA and plasma concentrations of progesterone and luteinizing hormone (LH) after mating were monitored following a single meal containing MPA (1000 mg) in entire does (n = 4); the response to gonadotrophin-releasing hormone (GnRH; 250 ng) was also observed in MPA-treated, ovariectomized does (n = 6). The reproductive tracts of rabbits mated following MPA treatment were examined 28-30 h after mating. Another group of rabbits (n = 4) received a single dose of MPA on Days 1, 10 or 19 after mating or daily for five days from Day 24. After dosage with 1000 mg MPA, plasma concentrations of MPA were detectable for eight days. However, following multiple dosing (10 mg, 5 days) MPA was detectable in the plasma for two days. MPA reduced the rate of ovulation and suppressed the increase in plasma concentrations of progesterone and LH observed after mating for four days, but had no effect on the response to GnRH. When administered late in gestation, MPA caused the death of fetuses. These results demonstrate an inhibitory effect of MPA on ovulation, probably at the hypothalamic level, and impairment of gestation or parturition.

1979 ◽  
Vol 32 (2) ◽  
pp. 231 ◽  
Author(s):  
RD Hooley ◽  
JK Findlay ◽  
RGA Stephenson

Basal concentrations of prolactin but not luteinizing hormone were elevated in ewes by 8-10 h of heat stress given daily during the first 11 days of their oestrous cycle. However, the prolactin and luteinizing hormone responses to thyrotrophin releasing hormone and gonadotrophin releasing hormone were unaffected.


1988 ◽  
Vol 117 (1) ◽  
pp. 35-41 ◽  
Author(s):  
P. F. Fennessy ◽  
J. M. Suttie ◽  
S. F. Crosbie ◽  
I. D. Corson ◽  
H. J. Elgar ◽  
...  

ABSTRACT Eight adult red deer stags were given an i.v. injection of synthetic gonadotrophin-releasing hormone (GnRH) on seven occasions at various stages of the antler cycle, namely hard antler in late winter, casting, mid-velvet growth, full velvet growth, antler cleaning and hard antler both during the rut and in mid-winter. The stags were allocated at random on each occasion to one of four doses, i.e. 1, 3, 10 or 95 μg GnRH. Blood samples were taken before GnRH injection and for up to 2 h after injection. Pituitary and testicular responses were recorded in terms of plasma LH and testosterone concentrations. There was an increase in plasma concentration of LH after the GnRH injection in all stags at all stages of the antler cycle. Dose-dependent responses of LH to GnRH in terms of area under the curve were apparent at all stages of the antler cycle. The lowest responses were recorded at casting, during velvet antler growth and at the rut sampling. The pattern of testosterone response reflected the inter-relationship of the antler and sexual cycles with very low testosterone responses occurring at casting and during velvet antler growth. The responses were higher at antler cleaning and then increased to a maximum at the rut before declining to reach their nadir at casting. The results are consistent with a hypothesis that the antler cycle, as a male secondary sexual characteristic, is closely linked to the sexual cycle and its timing is controlled by reproductive hormones. Low plasma concentrations of testosterone, even after LH stimulation, are consistent with the hypothesis that testosterone is unnecessary as an antler growth stimulant during growth. J. Endocr. (1988) 117, 35–41


1979 ◽  
Vol 81 (1) ◽  
pp. 109-118 ◽  
Author(s):  
SHUJI SASAMOTO ◽  
SHIGEO HARADA ◽  
KAZUYOSHI TAYA

When 1·0 μg luteinizing hormone releasing hormone (LH-RH) was given i.v. three times at 1 h intervals from 17.00 to 19.00 h on the day of dioestrus (day 0) to regular 4 day cyclic rats, premature ovulation was induced the next morning (day 1) with the number of ova present comparable to normal spontaneous ovulation. The next spontaneous ovulation occurred on the morning of day 5, 4 days after premature ovulation induced by LH-RH. Plasma concentrations of FSH and LH showed transient rises and falls within 1 h of administration of LH-RH; concentrations of FSH in the plasma decreased from 20.00 h on day 0 but markedly increased again from 23.00 h on day 0 to 02.00 h on day 1 and these high levels persisted until 14.00 h on day 1, with only a small increase of plasma LH during this period. The duration of increased FSH release during premature ovulation induced by LH-RH treatment was 6 h longer than the FSH surge occurring after administration of HCG on day 0. Surges of gonadotrophin were absent on the afternoon of day 1 (the expected day of pro-oestrus) and the surges characteristic of pro-oestrus occurred on the afternoon of day 4 and ovulation followed the next morning. The pituitary content of FSH did not decrease despite persisting high plasma levels of FSH during premature ovulation induced by either LH-RH or HCG on day 0. The changes in uterine weight indicated that the pattern of oestrogen secretion from the day of premature ovulation induced by LH-RH to the day of the next spontaneous ovulation was similar to that of the normal 4 day oestrous cycle. When 10 i.u. HCG were given on day 0, an increase in oestrogen secretion occurred on day 2, 1 day earlier than in the group given LH-RH on day 0. This advancement of oestrogen secretion was assumed to be responsible for the gonadotrophin surges on day 3. Similar numbers of fully developed follicles were found by 17.00 h on day 2 after premature ovulation induced by either LH-RH or HCG, suggesting that the shorter surge of FSH during premature ovulation induced by HCG had no serious consequences on the initiation of follicular maturation for the succeeding oestrous cycle in these rats. Administration of LH-RH on day 0 had no direct effect on the FSH surge during premature ovulation. Secretory changes in the ovary during ovulation may be responsible for this prolonged selective release of FSH.


1978 ◽  
Vol 76 (3) ◽  
pp. 557-558 ◽  
Author(s):  
J. B. WAKERLEY ◽  
M. B. TER HAAR

A.R.C. Institute of Animal Physiology, Babraham, Cambridge, CB2 4AT (Received 1 November 1977) Thyrotrophin releasing hormone (TRH) can have a stimulatory effect on the release of both prolactin and thyrotrophin (TSH; Deis & Alonso, 1973), although in the rat, supraphysiological doses of TRH are required to affect the secretion of prolactin (Burnet & Wakerley, 1976). A more important factor in the control of the release of prolactin is considered to be prolactin release inhibiting factor (PIF), which is thought to act through the catecholamine, dopamine (MacLeod, 1976). Stimuli which cause the concomitant release of TSH and prolactin are thought to have a direct effect at the hypothalamic level such that neurones releasing TRH are excited, whereas those releasing PIF are inhibited. In the present work, we have tested this hypothesis using the suckling stimulus to elicit the simultaneous release of prolactin and TSH (Blake, 1974; Burnet & Wakerley, 1976). If


2005 ◽  
Vol 153 (3) ◽  
pp. R7-R10 ◽  
Author(s):  
A P Silva ◽  
P Schoeffter ◽  
G Weckbecker ◽  
C Bruns ◽  
H A Schmid

Objective: Adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome is biochemically characterized by increased plasma concentrations of ACTH inducing hypersecretion of cortisol. Somatostatin is known to inhibit ACTH secretion, and in vitro data have shown the inhibition of ACTH secretion by agonists activating sst2 and sst5 receptors. The present study aimed to determine the inhibitory effect of the multireceptor ligand SOM230, compared with the sst2-preferring agonist octreotide, on corticotropin-releasing hormone (CRH)-stimulated secretion of ACTH and corticosterone in rats. Methods: Secretion of ACTH and corticosterone was induced by i.v. application of CRH (0.5 μg/kg) in rats pretreated 1 h before by i.v. application of SOM230 (1, 3, or 10 μg/kg), octreotide (10 μg/kg) or NaCl 0.9%. Results: SOM230 (3 and 10 μg/kg) inhibited CRH-induced ACTH release by 45±3% and 51±2%, respectively, and corticosterone release by 43±5% and 27±16%, respectively. 10 μg/kg of octreotide tended to be less potent at inhibiting ACTH release (34±6% inhibition) and did not alter the secretion of corticosterone. Conclusion: SOM230 has a stronger inhibitory effect on ACTH and corticosterone secretion than octreotide in rats. This difference can be explained by its higher affinity to sst1, sst3 and especially sst5 receptors compared with octreotide.


2013 ◽  
pp. 551-566
Author(s):  
John Reynard ◽  
Simon Brewster ◽  
Suzanne Biers

Male reproductive physiology 552 Aetiology and evaluation of male infertility 554 Investigation of male infertility 556 Oligozoospermia and azoospermia 560 Varicocele 562 Treatment options for male infertility 564 The hypothalamus secretes luteinizing hormone-releasing hormone (LHRH), also known as gonadotrophin-releasing hormone (GnRH). This causes the pulsatile release of anterior pituitary gonadotrophins called follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which act on the testis. FSH stimulates the seminiferous tubules to secrete inhibin and produce sperm; LH acts on Leydig cells to produce testosterone (...


2009 ◽  
Vol 54 (No. 3) ◽  
pp. 97-110 ◽  
Author(s):  
P. Podhorec ◽  
J. Kouril

Gonadotropin-releasing hormone in Cyprinidae as in other Vertebrates functions as a brain signal which stimulates the secretion of luteinizing hormone from the pituitary gland. Two forms of gonadotropin-releasing hormone have been identified in cyprinids, chicken gonadotropin-releasing hormone II and salmon gonadotropin-releasing hormone. Hypohysiotropic functions are fulfilled mainly by salmon gonadotropin-releasing hormone. The only known factor having an inhibitory effect on LH secretion in the family Cyprinidae is dopamine. Most cyprinids reared under controlled conditions exhibit signs of reproductive dysfunction, which is manifested in the failure to undergo final oocyte maturation and ovulation. In captivity a disruption of endogenous gonadotropin-releasing hormone stimulation occurs and sequentially that of luteinizing hormone, which is indispensible for the final phases of gametogenesis. In addition to methods based on the application of exogenous gonadotropins, the usage of a method functioning on the basis of hypothalamic control of final oocyte maturation and ovulation has become popular recently. The replacement of natural gonadotropin-releasing hormones with chemically synthesized gonadotropin-releasing hormone analogues characterized by amino acid substitutions at positions sensitive to enzymatic degradation has resulted in a centuple increase in the effectiveness of luteinizing hormone secretion induction. Combining gonadotropin-releasing hormone analogues with Dopamine inhibitory factors have made it possible to develop an extremely effective agent, which is necessary for the successful artificial reproduction of cyprinids.


1986 ◽  
Vol 111 (2) ◽  
pp. 172-178 ◽  
Author(s):  
C. Tamanini ◽  
M. E. Crowder ◽  
T. M. Nett

Abstract. The effect of treatment with oestradiol, progesterone, a combination of the two steroids or no steroids on pulsatile release of luteinizing hormone (LH) was examined in ovariectomized ewes. Beginning 3 days after ovariectomy, 5 ewes were assigned to each of the following treatment groups: 0.7 mg oestradiol, 16 mg progesterone, 0.7 mg oestradiol plus 16 mg progesterone or no steroid. All treatments were administered twice daily for 3 weeks in a 0.5 ml injection of ethanol given sc. After 2 weeks of treatment and 1, 4, 8, 16 and 32 days after the treatment period ended, blood samples were obtained from all ewes at 10-min intervals for a 6-h period. At the end of the 6-h period, 100 μg gonadotrophin-releasing hormone (GnRH) was injected iv and blood samples were collected at 15 min intervals for an additional 5 h to estimate the relative pituitary content of LH. Ovariectomized ewes receiving no steroid presented regular pulses of LH at frequency of four to five pulses during a 6-h sampling period. Treatment with progesterone alone decreased the frequency of pulsatile release of LH to approximately 1 pulse/6 h, but did not affect the amplitudes of the pulses of LH. Recovery of pulsatile release of LH to a frequency of four or five pulses of LH in a 6-h period was complete between 16 and 32 days after treatment ended in progesterone-treated ewes. Oestradiol, administered alone or with progesterone, resulted in a decrease in both the frequency and the amplitude of pulses of LH compared to control ewes and a decrease in GnRH-induced release of LH. In these groups, the GnRH-induced release of LH had returned to normal by 32 days after cessation of treatment. Although frequency and amplitude of endogenous pulses had increased by 32 days post-treatment, neither parameter had returned to normal. These data suggest that oestradiol exerts an inhibitory effect on the pituitary by decreasing the content of LH to a level which precludes pulsatile release of LH. Progesterone, in contrast, may inhibit the frequency of release of pulses of LH by reducing the frequency of pulsatile release of GnRH from the hypothalamus.


Sign in / Sign up

Export Citation Format

Share Document