scholarly journals 295POSSIBLE DOPAMINERGIC MECHANISM REGULATING THE EQUINE CORPUS LUTEUM

2004 ◽  
Vol 16 (2) ◽  
pp. 267 ◽  
Author(s):  
E.A. Dille ◽  
S.S. King ◽  
K.L. Jones ◽  
J.F. Roser ◽  
C.A. Pearl

Timing of embryo transfer to recipient mares is crucial to the success rate of an embryo transfer (ET) program. Recipient mares need a functional corpus luteum (CL) to maintain the early stages of pregnancy. Interference with luteal function appears to be a significant cause of failure with nonsurgical ET. Little is known about the endocrine control of luteal function in the mare, and the possibility of neuronal control of equine luteal function has not yet been studied. Dopamine (DA) has been shown to affect progesterone secretion in the bovine CL. Prior research in our laboratory suggested the possibility of dopaminergic regulation in the equine CL. The aim of this study was to document the presence of DA D1 receptor (D1r) and DA D2 receptor (D2r) within the equine CL. Immunocytochemistry (ICC) was performed on sections from 9 corpora lutea collected from a local equine abattoir. Tissues were stained using the avidin-biotin complex (ABC) method (Vectastain ABC Elite kit, Vector Laboratories, Burlingame, CA, USA). Tissues were fixed in 4% paraformaldehyde, embedded in paraffin, and cut into 5-μm sections. Tissue sections were deparaffinized and rehydrated;; endogenous peroxidase activity was quenched in 0.3% hydrogen peroxide in methanol at room temperature. To decrease nonspecific staining, tissue sections were incubated in goat serum (Vectastain ABC Elite kit). Tissue sections were then incubated overnight at 4°C with primary antibodies: Rabbit anti-Dopamine D1 receptor (Calbiochem, San Diego, CA, USA) or Rabbit anti-D2 receptor polyclonal antibody (Chemicon International, Inc, Temecula, CA, USA). Sections were then washed in PBS and incubated in biotinylated goat anti-rabbit IgG secondary antibody. After washing in PBS, sections were incubated in ABC. Sections were washed in PBS and the signal was visualized using 3-amino-9-ethylcarbazole (AEC Red, Vector Laboratories, Burlingame, CA, USA). Tissues were then counterstained with Immunomaster Hematoxylin (American Master Tech Scientific, Inc., Lodi, CA) to visualize the nuclei. As a negative control, tissues were incubated in normal rabbit serum instead of primary antibody, and as a positive control, the ICC procedure was performed on whole rat brain slices. Significant staining of luteal cells was observed using the D1r and D2r antibodies. Positive staining for D1r and D2r was seen throughout luteal cells;; however, no nuclear staining was observed. The presence of these receptors in equine CL tissue suggests a functional significance for DA in luteal function. Further research needs to be performed to determine the mechanistic function of dopamine in mare reproduction.

1986 ◽  
Vol 113 (4) ◽  
pp. 570-575 ◽  
Author(s):  
Firyal S. Khan-Dawood

Abstract. Immunoreactive oxytocin is detectable in the corpora lutea of women and cynomolgus monkeys by radioimmunoassay. To localize the presence of oxytocin and neurophysin I in ovarian tissues of subhuman primates, three corpora lutea and ovarian stromal tissues and two Fallopian tubes obtained during the menstrual cycle of the baboon and decidua from two pregnant baboons were examined using highly specific antisera against either oxytocin or neurophysin I and preoxidase-antiperoxidase light microscopy immunohistochemistry. Oxytocin-like as well as neurophysin I-like immunoreactivities were found in some cells of all the corpora lutea only, but could not be demonstrated in ovarian stromal tissues, Fallopian tubes and decidua. Specificity of the immunocytochemical reaction was further confirmed by immunoabsorption of the antiserum with excess oxytocin or neurophysin, after which the immunoreactivities for both oxytocin and neurophysin in the luteal tissue were negative. Similar controls using normal rabbit serum gave no positive staining for either oxytocin or neurophysin. Counterstaining of the positive immunoreactivities for oxytocin and neurophysin I with Mayer's haematoxylin and eosin demonstrated clearly that the oxytocin and neurophysin I appeared as granular material mainly within the cytoplasm of the luteal cells. The localization of immunoreactive oxytocin and neurophysin I in the corpus luteum of the baboon demonstrates directly the presence of these two neurohypophysial peptides within primate luteal cells and suggests their local production.


2016 ◽  
Vol 231 (3) ◽  
pp. 223-233 ◽  
Author(s):  
Liza Margareth Medeiros de Carvalho Sousa ◽  
Renata dos Santos Silva ◽  
Vanessa Uemura da Fonseca ◽  
Rafael Magdanelo Leandro ◽  
Thiago Senna Di Vincenzo ◽  
...  

This study aimed to determine in the canine corpus luteum throughout the dioestrus (1) the influence of insulin on glucose uptake; (2) the regulation of genes potentially involved; and (3) the influence of hypoxia on glucose transporter expression and steroidogenesis, after treatment with cobalt chloride (CoCl2). Glucose uptake by luteal cells increased 2.7 folds (P < 0.05) in response to insulin; a phenomenon related to increased expression of glucose transporter (GLUT) 4 and phosphorylation of protein kinase B (AKT). The gene expression of insulin receptor and SLC2A4 (codifier of GLUT4) genes after insulin stimulation increased on day 20 post ovulation (p.o.) and declined on day 40 p.o. (P < 0.05). Regarding potentially involved molecular mechanisms, the nuclear factor kappa B gene RELA was upregulated on days 30/40 p.o., when SLC2A4 mRNA was low, and the interleukin 6 (IL6) gene was upregulated in the first half of dioestrus, when SLC2A4 mRNA was high. CoCl2 in luteal cell cultures increased the hypoxia-inducible factor HIF1A/HIF1A and the SLC2A4/GLUT4 expression, and decreased progesterone (P4) production and hydroxyl-delta-5-steroid dehydrogenase 3 beta (HSD3B) mRNA expression (P < 0.05). This study shows that the canine luteal cells are responsive to insulin, which stimulates glucose uptake in AKT/GLUT4-mediated pathway; that may be related to local activity of RELA and IL6. Besides, the study reveals that luteal cells under hypoxia activate HIF1A-modulating luteal function and insulin-stimulated glucose uptake. These data indicate that insulin regulates luteal cells’ glucose disposal, participating in the maintenance and functionality of the corpus luteum.


Reproduction ◽  
2008 ◽  
Vol 136 (3) ◽  
pp. 367-375 ◽  
Author(s):  
Yumi Takao ◽  
Hiroshi Fujiwara ◽  
Shinya Yoshioka ◽  
Shingo Fujii ◽  
Masamichi Ueda

To investigate the physiological characteristics of the corpus luteum (CL) of pregnancy, we raised a mAb, human corpus luteum (HCL)-4, against human luteal cells obtained from CL of pregnancy. The affinity-purified antigen from human CL of pregnancy or placenta using HCL-4 was a 61 kDa protein. The partial amino acid sequence of the antigenic protein was identical to that of human monoamine oxidase A (MAOA, EC1.4.3.4). MAOA has been shown to catabolize catecholamines that were reported to regulate luteal function in CL and vasoconstriction in various organs. Immunohistochemistry using HCL-4 mAb showed that MAOA was intensely expressed on large luteal cells and moderately expressed on small luteal cells in the CL of pregnancy. In the CL of menstrual cycle, MAOA was weakly detected on large luteal cells but not detected at all on small luteal cells. Western blotting analysis confirmed the high expression of MAOA in CL of pregnancy. Northern blot analysis also showed the expression ofMAOAmRNA in human CL, and showed that its expression was higher in CL of pregnancy than in CL of menstrual cycle. The increased expression of MAOA in the CL of pregnancy suggests the contribution of MAOA to the function of the CL of pregnancy.


2005 ◽  
Vol 17 (6) ◽  
pp. 659 ◽  
Author(s):  
R. P. Roberto da Costa ◽  
V. Branco ◽  
P. Pessa ◽  
J. Robalo Silva ◽  
G. Ferreira-Dias

Steroid hormones act via specific receptors, and these play an important physiological role in the ovary. The objective of this study was to evaluate the cellular distribution of progesterone receptors and their staining intensity in different equine luteal structures during the breeding season, as well as their relationship to luteal cell composition, cell proliferation pattern and plasma progesterone (P4) concentration. There was an increase in proliferating cell nuclear antigen (PCNA) expression in large luteal cells from the corpus hemorrhagicum (CH) to mid-luteal phase, followed by a decrease toward the late luteal stage. In the CH, the number of large luteal cells was lower than in other structures. Only large luteal cells showed positive staining for P4 receptors. An increase in staining intensity for P4 receptors was observed between CH and mid-phase corpus luteum, and CH and late-phase corpus luteum. Synthesis of P4 started at a very early stage of the luteal structure and was accompanied by an increase in P4 receptors and PCNA expression, and proliferation of large luteal cells, until mid-luteal phase. These data suggest that large luteal cells might play an important role in the regulation or synthesis of P4 in equine luteal structures.


1968 ◽  
Vol 59 (2_Suppl) ◽  
pp. S35-S51 ◽  
Author(s):  
B. L. Lobel ◽  
E. Levy

ABSTRACT Activities of various hydrolases and dehydrogenases were studied during the formation, development and involution of cyclic corpora lutea and in the corpora lutea of early pregnancy. At 24 hours postovulation the luteal cells, whether of granulosal or thecal origin, contained demonstrable levels of Δ5-3β-hydroxysteroid dehydrogenase and the NADP and NADPH2 diaphorases. During the period of proliferation and cellular growth, enzymic activities in the luteal cells were moderate at first, and then increased. In the mature corpus luteum, activities of the dehydrogenases occurred in all luteal cells but were most intense in the large polymorphic luteal cells. Activities of hydrolytic enzymes, low in the immediate postovulatory period, increased with the development of the vascular system. Enzymic characteristics of corpora lutea of gestation were similar to those of cyclic corpora, except for phosphorylase activity which was observed in luteal cells in gestational corpora, but confined to the vascular walls in cyclic corpora. No increase in activities of 17β- and 20β-hydroxysteroid dehydrogenases (above those seen in pre-ovulatory follicles) were observed after incubation of sections of either mature cyclic or gestational corpora. Involution of cyclic corpora lutea began with degenerative changes in the blood vessels: pyknosis of the endothelial cell nuclei and a sudden decline in activities of hydrolytic enzymes in the vascular walls. Subsequently, the luteal cells showed a sharp decrease in activities of the dehydrogenases as well as other signs of regressive change. The cytochemical findings are discussed in relation to biochemical observations on steroid synthesis by the bovine corpus luteum.


2009 ◽  
Vol 17 (14) ◽  
pp. 4873-4880 ◽  
Author(s):  
Jing Zhang ◽  
Hai Zhang ◽  
Wenxian Cai ◽  
Leiping Yu ◽  
Xuechu Zhen ◽  
...  

2003 ◽  
Vol 228 (6) ◽  
pp. 741-748 ◽  
Author(s):  
Jerzy J. Jaroszewski ◽  
Dariusz J. Skarzynski ◽  
Robert M. Blair ◽  
William Hansel

The objective of the present study was to investigate the role of cell-to-cell contact in the influence of nitric oxide (NO) on the secretory function of the bovine corpus luteum (CL). In Experiment 1, separate small luteal cells (SLC) or large (LLC) luteal cells were perfused with 100 μ M spermineNONOate, a NO donor, or with 100 μ M Nω-nitro-L-arginine methyl ester (L-NAME), a NO synthase (NOS) inhibitor; in Experiment 2, a mixture of LLC and SLC and endothelial cells was cultured and incubated with spermineNONOate or L-NAME; in Experiment 3, spermineNONOate was perfused into the CL (100 mg/4 hr) by a microdialysis system in vivo. Perfusion of isolated SLC and LLC with the NO donor or NOS inhibitor (Experiment 1) did not affect ( P > 0.05) secretion of progesterone (P4) or oxytocin (OT). L-NAME perfusion increased ( P < 0.05) leukotriene C4 (LTC4) secretion by both SLC and LLC cells. Treatment of mixtures of luteal cells with an NO donor (Experiment 2) significantly decreased ( P < 0.001) secretion of P4 and OT and increased ( P < 0.001) production of prostaglandin F2α (PGF2α) and LTC4. L-NAME stimulated ( P < 0.001) P4 secretion, but did not influence ( P > 0.05) OT, PGF2α or LTC4 production. Intraluteal administration (Experiment 3) of spermineNONOate increased ( P < 0.001) LTC4 and PGF2α, decreased OT, but did not change P4 levels in perfusate samples. These data indicate that cell-to-cell contact and cell composition play important roles in the response of bovine CL to treatment with NO donors or NOS inhibitors, and that paracrine mechanisms are required for the full secretory response of the CL in NO action. Endothelial cells appear to be required for the full secretory response of the CL to NO.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


Sign in / Sign up

Export Citation Format

Share Document