scholarly journals Is the canine corpus luteum an insulin-sensitive tissue?

2016 ◽  
Vol 231 (3) ◽  
pp. 223-233 ◽  
Author(s):  
Liza Margareth Medeiros de Carvalho Sousa ◽  
Renata dos Santos Silva ◽  
Vanessa Uemura da Fonseca ◽  
Rafael Magdanelo Leandro ◽  
Thiago Senna Di Vincenzo ◽  
...  

This study aimed to determine in the canine corpus luteum throughout the dioestrus (1) the influence of insulin on glucose uptake; (2) the regulation of genes potentially involved; and (3) the influence of hypoxia on glucose transporter expression and steroidogenesis, after treatment with cobalt chloride (CoCl2). Glucose uptake by luteal cells increased 2.7 folds (P < 0.05) in response to insulin; a phenomenon related to increased expression of glucose transporter (GLUT) 4 and phosphorylation of protein kinase B (AKT). The gene expression of insulin receptor and SLC2A4 (codifier of GLUT4) genes after insulin stimulation increased on day 20 post ovulation (p.o.) and declined on day 40 p.o. (P < 0.05). Regarding potentially involved molecular mechanisms, the nuclear factor kappa B gene RELA was upregulated on days 30/40 p.o., when SLC2A4 mRNA was low, and the interleukin 6 (IL6) gene was upregulated in the first half of dioestrus, when SLC2A4 mRNA was high. CoCl2 in luteal cell cultures increased the hypoxia-inducible factor HIF1A/HIF1A and the SLC2A4/GLUT4 expression, and decreased progesterone (P4) production and hydroxyl-delta-5-steroid dehydrogenase 3 beta (HSD3B) mRNA expression (P < 0.05). This study shows that the canine luteal cells are responsive to insulin, which stimulates glucose uptake in AKT/GLUT4-mediated pathway; that may be related to local activity of RELA and IL6. Besides, the study reveals that luteal cells under hypoxia activate HIF1A-modulating luteal function and insulin-stimulated glucose uptake. These data indicate that insulin regulates luteal cells’ glucose disposal, participating in the maintenance and functionality of the corpus luteum.

2013 ◽  
Vol 93 (3) ◽  
pp. 993-1017 ◽  
Author(s):  
Erik A. Richter ◽  
Mark Hargreaves

Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca2+, and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.


Endocrinology ◽  
2006 ◽  
Vol 147 (5) ◽  
pp. 2245-2252 ◽  
Author(s):  
Wei Liao ◽  
M. T. Audrey Nguyen ◽  
Takeshi Imamura ◽  
Oded Singer ◽  
Inder M. Verma ◽  
...  

Adipose tissue is an important insulin target organ, and 3T3-L1 cells are a model cell line for adipocytes. In this study, we have used lentivirus-mediated short hairpin RNA (shRNA) for functional gene knockdown in 3T3-L1 adipocytes to assess the molecular mechanisms of insulin signaling. We chose to target GLUT4 to validate this approach. We showed that lentiviruses efficiently delivered transgenes and small interfering RNA (siRNA) into fully differentiated 3T3-L1 adipocytes. We established a strategy for identifying efficient siRNA sequences for gene knockdown by transfecting 293 cells with the target gene fluorescent fusion protein plasmid along with a plasmid that expresses shRNA. Using these methods, we identified highly efficient siGLUT4 sequences. We demonstrated that lentivirus-mediated shRNA against GLUT4 reduced endogenous GLUT4 expression to almost undetectable levels in 3T3-L1 adipocytes. Interestingly, insulin-stimulated glucose uptake was only reduced by 50–60%, suggesting that another glucose transporter mediates part of this effect. When siGLUT1 was introduced into GLUT4-deficient adipocytes, insulin-stimulated glucose uptake was essentially abolished, indicating that both GLUT4 and GLUT1 contribute to insulin-stimulated glucose transport in 3T3-L1 adipocytes. We also found that GLUT4 knockdown led to impaired insulin-responsive aminopeptidase protein expression that was dependent on whether GLUT4 was knocked down in the differentiating or differentiated stage. We further found that GLUT4 expression was not required for adipogenic differentiation but was necessary for full lipogenic capacity of differentiated adipocytes. These studies indicate that lentiviral shRNA constructs provide an excellent approach to deliver functional siRNAs into 3T3-L1 adipocytes for studying insulin signaling and adipocyte biology.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


1987 ◽  
Vol 40 (3) ◽  
pp. 331 ◽  
Author(s):  
William Hansel ◽  
Hector W Alila ◽  
Joseph P Dowd ◽  
Xiangzhong Yang

Evidence was cited to show that: (1) prostacyclin (PGI2) plays a luteotrophic role in the bovine corpus luteum and that products of the lipoxygenase pathway of arachidonic acid metabolism, especially 5-hydroxyeicosatetraenoic acid play luteolytic roles; (2) oxytocin of luteal cell origin plays a role in development, and possibly in regression, of the bovine corpus luteum; and (3) luteal cells arise from two sources; the characteristic small luteal cells at all stages of the o~strous cycle and pregnancy are of theca cell origin; the large cells are of granulosa cell origin early in the cycle, but a population of theca-derived large cells appears later in the cycle. Results of in vitro studies with total dispersed cells and essentially pure preparations of large and small luteal cells indicate that : (1) the recently described Ca2+ -polyphosphoinositol-protein kinase C second messenger system is involved in progesterone synthesis in the bovine corpus luteum; (2) activation of protein kinase C is stimulatory to progesterone synthesis in the small luteal cells; (3) activation of protein kinase C has no effect on progesterone synthesis in the large luteal cells; and (4) protein kinase C exerts its luteotrophic effect in total cell preparations, in part at least, by stimulating the production of prostacyclin. The protein kinase C system may cause down regulation of LH receptors in the large cells.


1967 ◽  
Vol 39 (2) ◽  
pp. 163-171 ◽  
Author(s):  
A. S. EL-SHEIKH ◽  
FRANÇOIS B. SAKLA ◽  
SAFAA O. AMIN

SUMMARY The histological and functional changes of 31 corpora lutea of Egyptian buffaloes during the various phases of the oestrous cycle were studied. The volumes of the corpora lutea were calculated, the volume per cell, the cell volume and the volume of the intercellular spaces were estimated from transverse serial sections stained with haematoxylin and eosin, Mallory's triple stain or van Gieson's stain. The nuclear volumes were also determined and the cytoplasmic volume was calculated. The progesterone content was estimated using column absorption chromatography and a counter-current distribution system. It was concluded that the luteal cells increase both in volume and in number due to mitosis. The luteal cells decrease in volume after the 15th day after ovulation, the cells lose their distinct outlines in the regressive stage and disappear completely in the corpus albicans. There was a parallel increase in luteal cell volume and progesterone content until the 15th post-ovulatory day followed by a decrease in the regressive phase and disappearance of the hormone in the corpus albicans. A highly significant correlation (r = +0·875) was found between the progesterone content and the cytoplasmic volume. Progesterone concentration/g. luteal tissue increased from the corpus haemorrhagicum to the mature corpus luteum, decreased in the regressive corpus luteum and completely disappeared in the corpus albicans.


Reproduction ◽  
2008 ◽  
Vol 136 (3) ◽  
pp. 367-375 ◽  
Author(s):  
Yumi Takao ◽  
Hiroshi Fujiwara ◽  
Shinya Yoshioka ◽  
Shingo Fujii ◽  
Masamichi Ueda

To investigate the physiological characteristics of the corpus luteum (CL) of pregnancy, we raised a mAb, human corpus luteum (HCL)-4, against human luteal cells obtained from CL of pregnancy. The affinity-purified antigen from human CL of pregnancy or placenta using HCL-4 was a 61 kDa protein. The partial amino acid sequence of the antigenic protein was identical to that of human monoamine oxidase A (MAOA, EC1.4.3.4). MAOA has been shown to catabolize catecholamines that were reported to regulate luteal function in CL and vasoconstriction in various organs. Immunohistochemistry using HCL-4 mAb showed that MAOA was intensely expressed on large luteal cells and moderately expressed on small luteal cells in the CL of pregnancy. In the CL of menstrual cycle, MAOA was weakly detected on large luteal cells but not detected at all on small luteal cells. Western blotting analysis confirmed the high expression of MAOA in CL of pregnancy. Northern blot analysis also showed the expression ofMAOAmRNA in human CL, and showed that its expression was higher in CL of pregnancy than in CL of menstrual cycle. The increased expression of MAOA in the CL of pregnancy suggests the contribution of MAOA to the function of the CL of pregnancy.


1998 ◽  
Vol 46 (9) ◽  
pp. 1043-1049 ◽  
Author(s):  
P. Bagavandoss ◽  
E. Helene Sage ◽  
Robert B. Vernon

In adult mammals, growth of new vasculature from extant blood vessels (angiogenesis) is rare in the absence of pathology. However, nonpathogenic angiogenesis occurs in the cycling ovary when the avascular postovulatory follicle transforms into a highly vascularized corpus luteum (CL). To improve our understanding of molecular mechanisms that regulate nonpathogenic vascular growth, we characterized the expression of two secreted matricellular proteins associated with angiogenesis, SPARC and thrombospondin (TSP), in postovulatory preluteal follicles and CL of hormone-primed immature rats. By indirect immunofluorescence with specific antibodies, we found SPARC in the cytoplasm of granulosa cells and thecal cells of preluteal follicles, in connective tissue cells of the ovarian interstitium, and in the oocyte nucleus. Administration of a luteinizing stimulus (chorionic gonadotropin) increased the expression of SPARC in granulosa cells. TSP was prominent in the basement membranes of growing follicles. Many cells in the early vascularizing CL expressed both SPARC and TSP. Neovascularization of CL was accompanied by expression of SPARC in nascent vessels and concentration of TSP in central avascular areas. In mature CL, steroidogenic luteal cells expressed both SPARC and TSP. Luteal cells of regressing CL retained SPARC to a variable degree but did not express TSP. The observed changes in expression of SPARC and TSP during development of the CL support distinct roles for these matricellular proteins in nonpathological morphogenesis and angiogenesis.


1994 ◽  
Vol 267 (5) ◽  
pp. F816-F824 ◽  
Author(s):  
R. G. Marcus ◽  
R. England ◽  
K. Nguyen ◽  
M. J. Charron ◽  
J. P. Briggs ◽  
...  

Because the insulin-responsive glucose transporter, GLUT4, is expressed in renal vascular and glomerular cells, we determined the effects of experimental diabetes mellitus on GLUT4 expression and glucose uptake by these tissues. Quantitative reverse-transcription polymerase chain reaction studies of microdissected afferent microvessels and renal glomeruli showed that, after 1 wk of diabetes, GLUT4 mRNA was decreased to 26 and 34% of control values, respectively. GLUT4 immunoblots of renal glomerular and microvessel samples showed that GLUT4 polypeptide was decreased to 51% of control values. These results were confirmed by indirect immunofluorescence, which showed decreased GLUT4 expression in glomerular cells and in vascular smooth muscle cells of the afferent microvasculature of diabetic animals. Uptake of the glucose analogue, 2-deoxyglucose, was also depressed in microvessels of diabetic rats to 57% of control values, supporting the conclusion that fewer total glucose transporters were available for glucose uptake into diabetic renal glomerular and microvascular cells. Thus both GLUT4 expression and glucose uptake by glomerular and microvascular cells are decreased in diabetic animals. These results have led us to suggest a mechanism by which decreased renal GLUT4 expression could contribute to glomerular hyperfiltration and hypertension seen in early diabetes.


Author(s):  
Christian Lee Andersen ◽  
Haeyeun Byun ◽  
Yuehuan Li ◽  
Shuo Xiao ◽  
Doris M Miller ◽  
...  

Abstract Certain chemotherapeutic drugs are toxic to ovarian follicles. The corpus luteum (CL) is normally developed from an ovulated follicle for producing progesterone (P4) to support early pregnancy. To fill in the knowledge gap about effects of chemotherapy on the CL, we tested the hypothesis that chemotherapy may target endothelial cells and/or luteal cells in the CL to impair CL function in P4 steroidogenesis using doxorubicin (DOX) as a representative chemotherapeutic drug in mice. In both mixed background mice and C57BL/6 mice, a single intraperitoneal injection of DOX (10 mg/kg) on 0.5 days post coitum (D0.5, post-ovulation) led to ~58% D3.5 mice with serum P4 levels lower than the serum P4 range in the PBS-treated control mice. Further studies in the C57BL/6 ovaries revealed that CLs from DOX-treated mice with low P4 levels had less defined luteal cords and disrupted collagen IV expression pattern, indicating disrupted capillary, accompanied with less differentiated luteal cells that had smaller cytoplasm and reduced StAR expression. DOX-treated ovaries had increased granulosa cell death in the growing follicles, reduced PCNA-positive endothelial cells in the CLs, enlarged lipid droplets and disrupted F-actin in the luteal cells. These novel data suggest that the proliferating endothelial cells in the developing CL may be the primary target of DOX to impair the vascular support for luteal cell differentiation and subsequently P4 steroidogenesis. This study fills in the knowledge gap about the toxic effects of chemotherapy on the CL and provides critical information for risk assessment of chemotherapy in premenopausal patients.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
João Victor Esteves ◽  
Francisco Javier Enguita ◽  
Ubiratan Fabres Machado

The solute carrier family 2 facilitated glucose transporter member 4 (GLUT4) plays a key role in the insulin-induced glucose uptake by muscle and adipose tissues. In prediabetes and diabetes, GLUT4 expression/translocation has been detected as reduced, participating in mechanisms that impair glycemic control. Recently, a class of short endogenous noncoding RNAs named microRNAs (miRNAs) has been increasingly described as involved in the posttranscriptional epigenetic regulation of gene expression. The present review focuses on miRNAs potentially involved in the expression of GLUT4 expression, and proteins related to GLUT4 and translocation in skeletal muscle, seeking to correlate them with insulin resistance and diabetes. So far, miR-21a-5p, miR-29a-3p, miR-29c-3p, miR-93-5p, miR-106b-5p, miR-133a-3p, miR-133b-3p, miR-222-3p, and miR-223-3p have been reported to directly and/or indirectly regulate the GLUT4 expression; and their expression is altered under diabetes-related conditions. Besides, some miRNAs that have been linked to the expression of proteins involved in GLUT4 translocation machinery in muscle could also impact glucose uptake. That makes these miRNAs promising targets for preventive and/or therapeutic approaches, which could improve glycemic control, thus deserving future new investigations.


Sign in / Sign up

Export Citation Format

Share Document