Localization of oxytocin and neurophysin in baboon (Papio anubis) corpus luteum by immunocytochemistry

1986 ◽  
Vol 113 (4) ◽  
pp. 570-575 ◽  
Author(s):  
Firyal S. Khan-Dawood

Abstract. Immunoreactive oxytocin is detectable in the corpora lutea of women and cynomolgus monkeys by radioimmunoassay. To localize the presence of oxytocin and neurophysin I in ovarian tissues of subhuman primates, three corpora lutea and ovarian stromal tissues and two Fallopian tubes obtained during the menstrual cycle of the baboon and decidua from two pregnant baboons were examined using highly specific antisera against either oxytocin or neurophysin I and preoxidase-antiperoxidase light microscopy immunohistochemistry. Oxytocin-like as well as neurophysin I-like immunoreactivities were found in some cells of all the corpora lutea only, but could not be demonstrated in ovarian stromal tissues, Fallopian tubes and decidua. Specificity of the immunocytochemical reaction was further confirmed by immunoabsorption of the antiserum with excess oxytocin or neurophysin, after which the immunoreactivities for both oxytocin and neurophysin in the luteal tissue were negative. Similar controls using normal rabbit serum gave no positive staining for either oxytocin or neurophysin. Counterstaining of the positive immunoreactivities for oxytocin and neurophysin I with Mayer's haematoxylin and eosin demonstrated clearly that the oxytocin and neurophysin I appeared as granular material mainly within the cytoplasm of the luteal cells. The localization of immunoreactive oxytocin and neurophysin I in the corpus luteum of the baboon demonstrates directly the presence of these two neurohypophysial peptides within primate luteal cells and suggests their local production.

1997 ◽  
Vol 45 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Firyal S. Khan-Dawood ◽  
Jun Yang ◽  
M. Yusoff Dawood

We have recently shown the presence of E-cadherin and of α- and γ-catenins in human and baboon corpora lutea. These are components of adherens junctions between cells. The cytoplasmic catenins link the cell membrane-associated cadherins to the actin-based cytoskeleton. This interaction is necessary for the functional activity of the E-cad-herins. Our aim therefore was to determine the presence of α-actin in the baboon corpus luteum, to further establish whether the necessary components for E-cadherin activity are present in this tissue. An antibody specific for the smooth muscle isoform of actin, α-actin, was used for these studies. The results using immunohistochemistry show that (a) α-actin is present in steroidogenic cells of the active corpus luteum, theca externa of the corpus luteum, cells of the vasculature, and the tunica albuginea surrounding the ovary. The intensity of immunoreactivity for α-actin varied, with the cells of the vasculature reacting more intensely than the luteal cells. A difference in intensity of immunoreactivity was also observed among the luteal cells, with the inner granulosa cells showing stronger immunoreactivity than the peripheral theca lutein cells. There was no detectable immunoreactivity in the steroidogenic cells of the atretic corpus luteum. However, in both the active and atretic corpora lutea, α-actin-positive vascular cells were dispersed within the tissue. (b) Total α-actin (luteal and non-luteal), as determined by Western blot analyses, does not change during the luteal phase and subsequent corpus luteum demise (atretic corpora lutea). (c) hCG stimulated the expression of α-actin and progesterone secretion by the early luteal phase (LH surge + 1–5 days) and midluteal phase (LH surge + 6–10 days) cells in culture, but only progesterone in the late luteal phase (LH surge + 11–15 days). The data show that α-actin is present in luteal cells and that its expression is regulated by hCG, thus suggesting that E-cadherin may form functional adherens junctions in the corpus luteum.


1967 ◽  
Vol 39 (2) ◽  
pp. 163-171 ◽  
Author(s):  
A. S. EL-SHEIKH ◽  
FRANÇOIS B. SAKLA ◽  
SAFAA O. AMIN

SUMMARY The histological and functional changes of 31 corpora lutea of Egyptian buffaloes during the various phases of the oestrous cycle were studied. The volumes of the corpora lutea were calculated, the volume per cell, the cell volume and the volume of the intercellular spaces were estimated from transverse serial sections stained with haematoxylin and eosin, Mallory's triple stain or van Gieson's stain. The nuclear volumes were also determined and the cytoplasmic volume was calculated. The progesterone content was estimated using column absorption chromatography and a counter-current distribution system. It was concluded that the luteal cells increase both in volume and in number due to mitosis. The luteal cells decrease in volume after the 15th day after ovulation, the cells lose their distinct outlines in the regressive stage and disappear completely in the corpus albicans. There was a parallel increase in luteal cell volume and progesterone content until the 15th post-ovulatory day followed by a decrease in the regressive phase and disappearance of the hormone in the corpus albicans. A highly significant correlation (r = +0·875) was found between the progesterone content and the cytoplasmic volume. Progesterone concentration/g. luteal tissue increased from the corpus haemorrhagicum to the mature corpus luteum, decreased in the regressive corpus luteum and completely disappeared in the corpus albicans.


2001 ◽  
Vol 73 (2) ◽  
pp. 323-327 ◽  
Author(s):  
Ş Arikan ◽  
A. Yigit

AbstractThis study was designed to investigate the size distribution of bovine steroidogenic luteal cells throughout pregnancy. Corpora lutea collected from three different stages of pregnancy were used. Luteal tissue was dissociated into single-cell suspension by enzyme treatments. Cells were stained for 3β-hydroxysteroid dehydrogenase (HSD) activity a marker for steroidogenic cells. The steroidogenic cells covered a wide spectrum of size ranging from 10 to 60 µm in diameter. There was a significant increase in mean cell diameter (P > 0·05) as pregnancy progressed. Mean diameter of 3β-HSD positive cells increased from 17·03 (s.e. 1·3) µm in the corpus luteum of early pregnancy to 33·38 (s.e. 2·4) µm in the corpus luteum of advanced pregnancy. The ratio of large (>22 µm in diameter) to small (10 to 22 µm in diameter) luteal cells was 0·32 : 1·0 in the early pregnancy, with the 10 to 22 µm cell size class predominant. However, the ratio of large to small luteal cells was increased to 6·49 : 1·0 µm as pregnancy advanced and 23 to 42 µm cell sizes become predominant. It is likely that small luteal cells develop into large cells as gestation progresses. Development of pregnancy is associated with an increase in size of steroidogenic luteal cells.


2004 ◽  
Vol 16 (2) ◽  
pp. 267 ◽  
Author(s):  
E.A. Dille ◽  
S.S. King ◽  
K.L. Jones ◽  
J.F. Roser ◽  
C.A. Pearl

Timing of embryo transfer to recipient mares is crucial to the success rate of an embryo transfer (ET) program. Recipient mares need a functional corpus luteum (CL) to maintain the early stages of pregnancy. Interference with luteal function appears to be a significant cause of failure with nonsurgical ET. Little is known about the endocrine control of luteal function in the mare, and the possibility of neuronal control of equine luteal function has not yet been studied. Dopamine (DA) has been shown to affect progesterone secretion in the bovine CL. Prior research in our laboratory suggested the possibility of dopaminergic regulation in the equine CL. The aim of this study was to document the presence of DA D1 receptor (D1r) and DA D2 receptor (D2r) within the equine CL. Immunocytochemistry (ICC) was performed on sections from 9 corpora lutea collected from a local equine abattoir. Tissues were stained using the avidin-biotin complex (ABC) method (Vectastain ABC Elite kit, Vector Laboratories, Burlingame, CA, USA). Tissues were fixed in 4% paraformaldehyde, embedded in paraffin, and cut into 5-μm sections. Tissue sections were deparaffinized and rehydrated;; endogenous peroxidase activity was quenched in 0.3% hydrogen peroxide in methanol at room temperature. To decrease nonspecific staining, tissue sections were incubated in goat serum (Vectastain ABC Elite kit). Tissue sections were then incubated overnight at 4°C with primary antibodies: Rabbit anti-Dopamine D1 receptor (Calbiochem, San Diego, CA, USA) or Rabbit anti-D2 receptor polyclonal antibody (Chemicon International, Inc, Temecula, CA, USA). Sections were then washed in PBS and incubated in biotinylated goat anti-rabbit IgG secondary antibody. After washing in PBS, sections were incubated in ABC. Sections were washed in PBS and the signal was visualized using 3-amino-9-ethylcarbazole (AEC Red, Vector Laboratories, Burlingame, CA, USA). Tissues were then counterstained with Immunomaster Hematoxylin (American Master Tech Scientific, Inc., Lodi, CA) to visualize the nuclei. As a negative control, tissues were incubated in normal rabbit serum instead of primary antibody, and as a positive control, the ICC procedure was performed on whole rat brain slices. Significant staining of luteal cells was observed using the D1r and D2r antibodies. Positive staining for D1r and D2r was seen throughout luteal cells;; however, no nuclear staining was observed. The presence of these receptors in equine CL tissue suggests a functional significance for DA in luteal function. Further research needs to be performed to determine the mechanistic function of dopamine in mare reproduction.


1968 ◽  
Vol 59 (2_Suppl) ◽  
pp. S35-S51 ◽  
Author(s):  
B. L. Lobel ◽  
E. Levy

ABSTRACT Activities of various hydrolases and dehydrogenases were studied during the formation, development and involution of cyclic corpora lutea and in the corpora lutea of early pregnancy. At 24 hours postovulation the luteal cells, whether of granulosal or thecal origin, contained demonstrable levels of Δ5-3β-hydroxysteroid dehydrogenase and the NADP and NADPH2 diaphorases. During the period of proliferation and cellular growth, enzymic activities in the luteal cells were moderate at first, and then increased. In the mature corpus luteum, activities of the dehydrogenases occurred in all luteal cells but were most intense in the large polymorphic luteal cells. Activities of hydrolytic enzymes, low in the immediate postovulatory period, increased with the development of the vascular system. Enzymic characteristics of corpora lutea of gestation were similar to those of cyclic corpora, except for phosphorylase activity which was observed in luteal cells in gestational corpora, but confined to the vascular walls in cyclic corpora. No increase in activities of 17β- and 20β-hydroxysteroid dehydrogenases (above those seen in pre-ovulatory follicles) were observed after incubation of sections of either mature cyclic or gestational corpora. Involution of cyclic corpora lutea began with degenerative changes in the blood vessels: pyknosis of the endothelial cell nuclei and a sudden decline in activities of hydrolytic enzymes in the vascular walls. Subsequently, the luteal cells showed a sharp decrease in activities of the dehydrogenases as well as other signs of regressive change. The cytochemical findings are discussed in relation to biochemical observations on steroid synthesis by the bovine corpus luteum.


1972 ◽  
Vol 52 (1) ◽  
pp. 37-50 ◽  
Author(s):  
W. H. TAM

SUMMARY The ovarian tissue components of the pregnant chinchilla were incubated with equimolar amounts of [7α-3H]pregnenolone and [4-14C]progesterone. The greater contribution by [7α-3H]pregnenolone than by [4-14C]progesterone towards the formation of 17α-hydroxyprogesterone and androstenedione, and the relatively high yields of 17α-hydroxypregnenolone and dehydroepiandrosterone showed that both the 4-ene and 5-ene pathways of steroid metabolism were used in the interstitial tissue. No significant amount of 17α-hydroxylation was observed in the primary and accessory corpora lutea. The results of kinetic investigations using [7α-3H]pregnenolone as substrate also demonstrated a precursor—product relationship between dehydroepiandrosterone and androstenedione in the interstitial tissue, but this was not apparent in the luteal tissue. The results indicated that the interstitial tissue was capable of synthesizing progesterone and oestrogens as major products, and that the lack of 17α-hydroxylation in the luteal tissue was a controlling factor ensuring the synthesis of progesterone as its principal hormonal product. A small amount of [4-14C]dehydroepiandrosterone was always isolated with a much larger amount of the tritiated compound. This implied the conversion of 14C-labelled 4-en-3-oxosteroids into 5-ene-3β-hydroxysteroids which has generally been regarded as impossible. The isolation of this product, which may be an artifact, and the possibility that progesterone and oestrogens may be synthesized by different cells (granulosa and theca lutein cells) in the corpus luteum, or that there may be a third pathway for oestrogen synthesis, as suggested by the results of the kinetic experiments, are discussed.


Reproduction ◽  
2001 ◽  
pp. 587-594 ◽  
Author(s):  
T Tsubota ◽  
S Taki ◽  
K Nakayama ◽  
JI Mason ◽  
S Kominami ◽  
...  

The Japanese black bear, Ursus thibetanus japonicus, is a seasonal breeder and shows delayed implantation for several months during pregnancy. The objective of this study was to clarify the steroidogenic capability of the corpus luteum and placenta during pregnancy, including both delayed implantation and fetal development, by immunolocalization of steroidogenic enzymes in these organs of the Japanese black bear. Ovaries and placentae from 15 wild Japanese black bears, which had been killed legally by hunters and were thought to be pregnant, were used in an immunocytochemical study to localize the cholesterol side chain cleavage cytochrome P450 (P450scc), 3beta-hydroxysteroid dehydrogenase (3betaHSD), 17alpha-hydroxylase cytochrome P450 (P450c17) and aromatase cytochrome P450 (P450arom) by the avidin-biotin-peroxidase complex method using polyclonal antisera raised in mammals against P450scc, 3betaHSD, P450c17 and P450arom. P450scc and 3betaHSD were localized in all luteal cells throughout pregnancy. P450c17 was present in a few luteal cells, especially in the outer area of the corpus luteum throughout pregnancy, but the number of positively immunostained cells decreased during the post-implantation period. Cells positively immunostained for P450c17 were significantly smaller than negatively immunostained cells (P < 0.01). P450arom was present sporadically in a few luteal cells throughout pregnancy, but the number of positively immunostained cells decreased during the post-implantation period. The size of cells positively immunostained for P450arom was not significantly different from that of negatively immunostained cells. The whole placenta was negatively immunostained for P450scc, 3betaHSD and P450c17, but P450arom was present in the syncytiotrophoblasts and endothelial cells of maternal blood vessels. These results indicate that, in the Japanese black bear, corpora lutea are a source of progesterone which may play an important role in the maintenance of delayed implantation and fetal development during pregnancy. Corpora lutea have a minimum capability to synthesize androgen in small luteal cells and oestrogen in normal-sized luteal cells during pregnancy, and placentae have the ability to synthesize oestrogen during late pregnancy.


1982 ◽  
Vol 35 (4) ◽  
pp. 441 ◽  
Author(s):  
RJ Rodgers ◽  
JD O'Shea

A method is presented for the isolation and purification of three cell types, endothelial cells, small luteal cells and large luteal cells, from the ovine corpus luteum. The method involves enzymatic dispersion of luteal tissue followed by centrifugation of separated cells on a Ficoll gradient. The three purified cell types and others, particularly fibrocytes and smooth muscle cells, that were removed during purification, were identified by their morphology. The cell yield, the cellular composition and cellular progesterone content of each fraction from the Ficoll gradient were measured. The endothelial cell fractions were relatively free of contamination by other cell types and had negligible progesterone. Fractions of small luteal cells and those of large luteal cells contained endothelial cells but were relatively free of other cell types. Large luteal cells contained significantly more progesterone, produced more progesterone when incubated in culture, but were less responsive to luteinizing hormone than small luteal cells.


1996 ◽  
Vol 1996 ◽  
pp. 69-69
Author(s):  
AJ Holt ◽  
RG Rodway ◽  
JBC Findlay ◽  
HS Sands ◽  
DN Batchelder

The role of β-carotene in the fertility of ruminant animals has long been acknowledged (Friesecke, 1978). Initially this was thought to be due to its action as a vitamin A precursor but recently β-carotene itself has been considered responsible for improving reproductive performance (Hurley & Doane, 1989). The mechanism by which β-carotcne acts is unclear, but as its concentration in the corpus luteum was typically found to be 70μg per gram of tissue, its biological action is probably exerted in this area.β-Carotene has been studied in the bovine corpus luteum using Raman spectroscopy, high performance liquid chromatography (HPLC) and gel filtration chromatography. The structure of β-carotene produces a characteristic Raman spectrum and by utilising an imaging technique, photographs of isolated luteal cells were obtained indicating the regions of β-carotene within them. Differential centrifugation was used to obtain pure subcellular fractions of luteal cells.


1982 ◽  
Vol 95 (1) ◽  
pp. 65-70 ◽  
Author(s):  
G. J. S. Tan ◽  
R. Tweedale ◽  
J. S. G. Biggs

The effects of oxytocin on dispersed luteal cells from human corpora lutea of the menstrual cycle were studied. Oxytocin at a concentration of 4 mi.u./ml produced a slight increase in basal progesterone production. However, higher oxytocin concentrations (400 and 800 mi.u./ml) markedly inhibited both basal and human chorionic gonadotrophin-induced progesterone production. These data provide evidence for an effect of oxytocin on the human corpus luteum. In view of the inhibitory action of oxytocin, increased secretion of this hormone may be important in the demise of the corpus luteum at the end of the menstrual cycle.


Sign in / Sign up

Export Citation Format

Share Document