168 CHARACTERIZATION AND DIFFERENTIATION INTO OOCYTE-LIKE CELL MASSES OF PORCINE MESENCHYMAL STEM CELLS DERIVED FROM OVARIAN THECA CELLS

2011 ◽  
Vol 23 (1) ◽  
pp. 186 ◽  
Author(s):  
Y. M. Lee ◽  
B. Mohana Kumar ◽  
S. W. Kim ◽  
S. L. Lee ◽  
G. J. Rho

Recent findings have shown that ovaries after birth have germ line stem cells, which were considered as an alternative for the production of an animal model. The present study was therefore aimed to characterise ovarian theca cells and generate oocyte-like cell masses in vitro in porcine. Theca cells isolated from ovarian follicle were cultured in A-DMEM supplemented with 10% FBS at 38.5°C in a humidified atmosphere of 5% CO2 in air. The cells were evaluated the expression of transcriptional factors (Oct3/4, Nanog, and Sox2) by immunocytochemical staining and RT-PCR, and followed by differentiated into osteocytes, adipocytes, and chondrocytes under controlled conditions. Differentiation of multiple mesenchymal lineages was confirmed by RT-PCR and specific marker staining. Differentiated cells into osteocytes, adipocytes, and chondrocytes were characterised by von Kossa and Alizarin Red staining, Oil red O staining, and Alcian Blue staining, respectively. The specific genes of osteocytes (Osteonectin, Osteocalcin and Runx2) and adipocytes (aP2) were analysed by RT-PCR. In vitro oogenesis was induced in DMEM/F12 by the previously described method (Dyce et al. 2006) for 48 days. Expression of transcriptional factors (Oct4, Sox2, and Nanog) and oocyte-specific markers (c-Mos and GDF9b) was analysed by RT-PCR in these differentiated cells. At 48 days of differentiation, the oocyte-like cell masses were further cultured in TCM-199 supplemented with 0.5 μL mL–1 FSH and 0.5 μL mL–1 LH for 15 days. Induced cells were morphologically observed following Hoechst 33342. Expression of Oct3/4 was analysed by immunocytochemical staining in these cells. Among the transcriptional factors, only Sox2 was detected by immunocytochemical staining and RT-PCR in the theca cells. Differentiation to osteocytes, adipocyte, and chondrocytes was confirmed by specific-marker staining and gene expression by RT-PCR, respectively. The morphology of oocyte-like cell masses was distinct by 40 days of differentiation. Granulosa or cumulus-like cells were distributed through the whole surface of oocyte-like cell masses. Transcriptional factors, c-Mos, and GDF9b were detected in the cell masses by RT-PCR. After being transferred oocyte-like cell masses to TCM-199, zona pellucida-like structure was formed around the edge of the cell mass. After 15 days of culture in TCM-199, the morphology of cells was changed into blastocyst-like structure, which surrounded cumulus-like cells. Oct3/4 was expressed by immunocytochemical staining in a blastocyst-like structure. These observations demonstrated that ovarian theca cells have similar characteristics to mesenchymal stem cells in view of multilineage differentiation. Theca cells can be differentiated into oocyte-like cell masses, which expressed oocyte-specific markers. These cell masses were further developed to a blastocyst-like structure, which expressed Oct3/4. Further studies are required to evaluate in vivo differentiation to oocyte-like cells. This work was supported by Grant No. 200908FHT010204005 from Biogreen21 and Grant No. 2007031034040 from Bio-organ.

2011 ◽  
Vol 23 (1) ◽  
pp. 247
Author(s):  
T. H. Kim ◽  
B. G. Jeon ◽  
S. L. Lee ◽  
G. J. Rho

Mesenchymal stem cells (MSC) are regarded as an attractive source for tissue engineering and regeneration, and bone marrow extract has been commonly used as a source of pluripotent MSC. However, skin tissue has recently been identified as a convenient alternative source of MSC. The present study was focused on the effect of characterised MSC derived from rat on expression of early transcriptional factors, alkaline phosphate (AP) activity, and in vitro differentiation into selected cell lineages. The MSC were isolated from 8-week-old s.d. rat’s ear skin and cultured in advanced DMEM supplemented with 10% fetal bovine serum at 37°C in a humidified atmosphere of 5% CO2 in air. To evaluate AP activity, cells were fixed with 3.7% formaldehyde solution and stained with Western Blue® (Promega, Madison, WI, USA). Expressions of early transcriptional factors (Oct-4, Sox2, and Nanog) were evaluated by RT-PCR. Differentiation into distinct mesenchymal lineages such as adipogenic, osteogenic, and neuron was done by following previously described protocols and assessed by lineage-specific stains. The specific genes in the osteocytes (osteocalcin, osteonectin, osteopontin, and Runx2), adipocytes (pparγ2, adiponectin, and aP2) or neuron (nestin, neurogenin 1, β-tublin, and nerve growth factor) were characterised by RT-PCR. The MSC were positive for AP activity and expressed Oct-4, Sox2, and Nanog. Following induction, MSC were successfully differentiated into adipocytes, osteocytes, and neurons. As adipocytes markers, aP2, pparγ2, and adiponectin were strongly detected in the adipocyte induced cells. Osteonectin, osteocalcin, Runx2, and osteopontin were expressed in the adipocyte induced cells. Futhermore, neuron-specific markers were clearly expressed in the neuronal differentiated cells. In conclusion, MSC have the capability of differentiation into multilineages including adipocytes, osteocytes, and neurons under the specific induction conditions. Skin tissue in rat can serve as an easily accessible and expandable alternative source for MSC harvesting and preclinical applications using an animal model. This work was supported by Grant No. 2007031034040 from Bio-organ and 200908FHT010204005 from Biogreen21, Republic of Korea.


2011 ◽  
Vol 23 (1) ◽  
pp. 248
Author(s):  
J. H. Lee ◽  
Y. M. Lee ◽  
G. H. Maeng ◽  
S. L. Lee ◽  
G. J. Rho

The canine has been a useful animal model for the study of fundamental mechanisms and the testing of new therapies for several human pathologies using mesenchymal stem cells (MSC). For preclinical applications, the most commonly used source of canine MSC is bone marrow. Because the amount of autologous bone marrow that can be obtained is limited, skin tissue could supply a noninvasive alternative with large quantities available for the establishment of MSC. In this study, we isolated canine MSC (cMSC) from ear skin and evaluated the expression of transcriptional factors and in vitro differentiation into multiple mesenchymal lineages. The cMSC isolated from the ear skin of a female beagle dog (6 years old) were cultured in advanced-DMEM/F12 (1:1, v/v) supplemented with 10% serum replacement at 37°C, 5% CO2 in a humidified atmosphere. The cMSC at passage 3 were analysed for expression of surface markers (CD44, CD90, and CD105) and transcriptional factors (Oct-4, Nanog, and Sox2) using flow cytometry, immunohistochemical staining and RT-PCR, respectively. Differentiations into adipocytes and osteocytes of cMSC were carried out under controlled conditions for 2 and 4 weeks and evaluated by staining (Oil Red O, von Kossa and Alizarin Red S, respectively). The cMSC were induced to differentiate into neural cells in the controlled condition for 6 h. Neuronal differentiated cMSC were evaluated by immunohistochemical staining, RT-PCR, and Western blot of specific markers of neuron, such as Î2-tubulin, microtubule associated protein (MAP-2), neuronfilament M (NF-M), nerve growth factor (NGF), and nestin. The MSC surface markers such as CD44, 90, and 105 were highly detected, and transcriptional factors (Oct-4, Nanog, and Sox2) were expressed in cMSC. Adipocyte induced cells were positive by staining with Oil Red O, and osteocytes were stained by von Kossa and Alizarin Red S. Neuronal specific markers such as Î2-tubulin, MAP-2, NF-M, NGF, and nestin were expressed in the neuron induced cMSC. In conclusion, canine ear-skin-derived MSC have the capacity for differentiation into multiple lineages and have a confirmed great capability for neuronal differentiation. Hence, canine ear skin tissue could be considered a source for applications of MSC for neuronal regeneration therapy of canine and a preclinical research model for human. This work was supported by Grant No. 2007031034040 from Bio-organ and Grant No. 200908FHT010204005 from Biogreen21.


2013 ◽  
Vol 25 (1) ◽  
pp. 295
Author(s):  
B. Mohana Kumar ◽  
W. J. Lee ◽  
Y. M. Lee ◽  
R. Patil ◽  
S. L. Lee ◽  
...  

Mesenchymal stem cells (MSC) are isolated from bone marrow or other tissues, and have properties of self renewal and multilineage differentiation ability. The current study investigated the in vitro differentiation potential of porcine bone marrow derived MSCs into hepatocyte-like cells. The MSC were isolated from the bone marrow of adult miniature pigs (7 months old, T-type, PWG Micro-pig®, PWG Genetics, Seoul, Korea) and adherent cells with fibroblast-like morphology were cultured on plastic. Isolated MSCs were positive for CD29, CD44, CD73, CD90, and vimentin, and negative for CD34, CD45, major histocompatibility complex-class II (MHC-class II), and swine leukocyte antigen-DR (SLA-DR) by flow cytometry analysis. Further, trilineage differentiation of MSC into osteocytes (alkaline phosphatase, von Kossa and Alizarin red), adipocytes (Oil Red O), and chondrocytes (Alcian blue) was confirmed. Differentiation of MSC into hepatocyte-like cells was induced with sequential supplementation of growth factors, cytokines, and hormones for 21 days as described previously (Taléns-Visconti et al. 2006 World J. Gastroenterol. 12, 5834–5845). Morphological analysis, expression of liver-specific markers, and functional assays were performed to evaluate the hepatic differentiation of MSC. Under hepatogenic conditions, MSC acquired cuboidal morphology with cytoplasmic granules. These hepatocyte-like cells expressed α-fetoprotein (AFP), albumin (ALB), cytokeratin 18 (CK18), cytochrome P450 7A1 (CYP7A1), and hepatocyte nuclear factor 1 (HNF-1) markers by immunofluorescence assay. In addition, the expression of selected markers was demonstrated by Western blotting analysis. In accordance with these features, RT-PCR revealed transcripts of AFP, ALB, CK18, CYP7A1, and HNF-1α. Further, the relative expression levels of these transcripts were analysed by quantitative RT-PCR after normalizing to the expression of the endogenous control, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data were analysed statistically by one-way ANOVA using PASW statistics 18 (SPSS Inc., Chicago, IL, USA), and significance was considered at P < 0.05. The results showed that the relative expressions of selected marker genes in hepatocyte-like cells were significantly increased compared with that in untreated MSC. The generated hepatocyte-like cells showed glycogen storage as analysed by periodic acid-Schiff (PAS) staining. Moreover, the induced cells produced urea at Day 21 of culture compared with control MSC. In conclusion, our results indicate the potential of porcine MSC to differentiate in vitro into hepatocyte-like cells. Further studies on the functional properties of hepatocyte-like cells are needed to use porcine MSC as an ideal source for liver cell therapy and preclinical drug evaluation. This work was supported by Basic Science Research Program through the National Research Foundation (NRF), funded by the Ministry of Education, Science and Technology (2010-0010528) and the Next-Generation BioGreen 21 Program (No. PJ009021), Rural Development Administration, Republic of Korea.


2011 ◽  
Vol 23 (1) ◽  
pp. 249
Author(s):  
B. Mohana Kumar ◽  
T. H. Kim ◽  
Y. M. Lee ◽  
G. H. Maeng ◽  
B. G. Jeon ◽  
...  

Differentiation of mesenchymal stem cells (MSC) into specialised cells in vitro before transplantation may improve the engraftment efficiency of the transplanted cells as well as the safety and efficacy of treatment. To understand the differentiation process and the functional identities of cells in an animal model, we examined the in vitro differentiation capacity of porcine MSC (3–6 passage) into cardiomyocyte-like and neuron-like cells. The MSC isolated from the bone marrow of postnatal miniature piglets [T-type, PWG Micro-pig (R), PWG Genetics, Korea] exhibited a typical fibroblast-like morphology and expressed the specific markers, such as CD29, CD44, and CD90. After 21 days of culture in induction media, MSC revealed the appropriate phenotype of osteocytes (von Kossa and Alizarin red), adipocytes (Oil red O), and chondrocytes (Alcian blue). Ther MSC were further induced into cardiomyogenic and neurogenic differentiation following the protocols described earlier (Tomita et al. 2002 J. Thorac. Cardiovasc. Surg. 123, 1132–1140) and (Woodbury et al. 2002 J. Neurosci. Res. 96, 908–917), respectively, with minor modifications. Expression of lineage-specific markers was evaluated by immunocytochemistry, and RT-PCR and quantitative PCR (RT-qPCR). For cardiomyogenic differentiation, MSC were stimulated with 10 μM 5-azacytidine for 24 h, 3 days, or 7 days, and the cells were maintained in culture for 21 days. Upon induction, MSC exhibited elongated and stick-like morphology with extended cytoplasmic processes, and toward the end of culture, cells formed aggregates and myotube-like structures. Immunostaining was positive for the markers of cardiomyocyte-like cells, such as α-smooth muscle actin, cardiac troponin T, desmin, and α-cardiac actin. The RT-PCR and RT-qPCR analysis showed the expression and a time dependent up-regulation of cardiac troponin T, desmin, α-cardiac actin, and β-myosin heavy chain genes. Following induction with neuronal-specific media for 3 days, above 80% of MSC acquired the morphology of neuron-like cells with bi- or multipolar cell processes forming a network-like structure. Induced cells with neuronal phenotype were positively stained for nestin, neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), and neurofilament-M (NF-M). The expression of neural transcripts, such as nestin, GFAP, and NF-M, was further confirmed by RT-PCR and RT-qPCR. In conclusion, our results showed the potential of porcine MSC to differentiate in vitro into cardiomyocyte-like and neuron-like cells, thus offering a useful model for studying their functional and molecular properties before transplantation. This work was supported by Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (2010-0010528) and BioGreen 21 (20070301034040), Republic of Korea.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Ziming Liu ◽  
Yuwan Li ◽  
Qi You ◽  
Jibin Yang ◽  
...  

Background. FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective. The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods. In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3×105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results. In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion. hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4067-4067
Author(s):  
Li Chen ◽  
Dongmei He ◽  
Yuan Zhang

Abstract Mesenchymal stem cells (MSC) from bone marrow cavity are multipotent cells. Their primary function is to support the growth and differentiation of hematologic progenitors. MSCs have been shown to differentiate into a variety of cell types including: bone, adipocytes, cartilage, neuron-like, and muscle-like cells. This project aimed to induce MSCs from rat bone marrow into mature dopamine secreting cells. MSCs were isolated from rat bone marrow, cultured and passaged. After propagating for three generations in vitro culture, MSCs were induced by epidermal growth factor, basic fibroblast growth factor and retinoic acid. After induction, morphologic change was examined by light microscope. NSE,MAP-2a, b and tyrosine hydroxylase (TH) was examined by immunocytochemistry. The related genes of the differentiated neurons, such as Nurr-1, nestin, mash-1,DR2-L,AADC and TH were detected by RT-PCR. After MSCs were inducted for 7 days,14 days and 21 days, dopamine production and release in the extract and medium of dopaminergic-induced cultured cells was assayed by dopamine ELISA. After 14 days of induction, MSC showed neuron-like morphologic changes and expressed NSE, MAP-2a, b and TH. RT-PCR. showed that these induced cells expressed nerves stem cells gene Nestin,Nurr-1 and dopamine nerves gene mash-1,DR2-L,AADC,TH. Most importantly, dopamine ELISA analysis showed the evidence of dopamine release in the extract and medium of dopaminergic-induced clonal MSCs. The results suggest that bone marrow MSCs from rat can be induced to differentiate into dopaminergic neuron-like cells in vitro. Bone marrow MSCs will provide a promising source of neural progenitor cells and may be a favorable candidate for cellular therapy of Parkinson’s disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Chinh Chung Doan ◽  
Thanh Long Le ◽  
Nghia Son Hoang ◽  
Dinh Nguyen Ky ◽  
Hoang Chuong Nguyen ◽  
...  

Background. Mesenchymal stem cells (MSCs), isolated from bone marrow, adipose tissue, and umbilical cord tissue, have been known to differentiate into hepatocyte-like cells. MSCs can also be easily obtained from umbilical cord lining membrane (CLMSCs). CLMSCs are more primitive MSCs than those isolated from other tissue sources. Objectives. The aim of this study was to investigate the in vitro differentiation of CLMSCs into hepatocyte lineage. Materials and Methods. In this study, CLMSCs were isolated through a tissue attachment method. Cells were characterized for expression of MSC-specific markers and differentiation potency. CLMSCs were induced to differentiate into hepatocytes by a simple two-step protocol. Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. Results. CLMSCs expressed MSC-specific markers and differentiated into adipocytes and osteoblasts. RT-PCR, real-time qRT-PCR, Western blot, and immunocytochemistry analyses demonstrated that differentiated CLMSCs, having hepatocyte-like morphology, expressed several liver-specific markers, such as ALB, AFP, CK18, and CK19, at both mRNA and protein levels following hepatocyte differentiation. Furthermore, periodic acid-Schiff staining and low-density lipoprotein (LDL) uptake assay showed that differentiated cells could store glycogen and uptake LDL. Conclusion. This study demonstrated that CLMSCs can differentiate into functional hepatocyte-like cells. CLMSCs can serve as a favorable cell source for tissue engineering in the treatment of liver disease.


2016 ◽  
Vol 22 (5) ◽  
pp. 1018-1033 ◽  
Author(s):  
Alexandra Roman ◽  
Emöke Páll ◽  
Mărioara Moldovan ◽  
Darian Rusu ◽  
Olga Şoriţău ◽  
...  

AbstractResin composite materials that are used to restore tooth cervical lesions associated with gingival recessions can hamper healing after root coverage surgeries. This study evaluates the in vitro cytotoxic effect of five resin composites (two commercial and three experimental) on oral mesenchymal stem cells (MSCs) and the persistence of stemness properties in high passage MSCs. Sorption and solubility tests were made for all materials. MSCs were isolated from re-entry palatal and periodontal granulation tissues and were characterized and cultured on composite discs. Cytotoxicity of the materials was evaluated by the Alamar Blue viability test, by Paul Karl Horan (PKH) labeling, and by immunocytochemical staining for actin. Water and saliva sorption and solubility data revealed that two of the experimental materials behaved comparable with the marketed resin composites. The Alamar Blue viability test shows that both cell lines grew well on composite discs that seemed to induce no apparent toxic effects. No signs of disruption of cytoskeleton organization was seen. Experimental resin composites can be recommended for further investigation for obtaining approval for use. The standard minimal criteria were fulfilled for high passage MSCs. Palatal tissue regains its regenerative properties in terms of MSC presence in the re-entry area after 6 months of healing.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Huan Liao ◽  
Hongxuan Wang ◽  
Xiaoming Rong ◽  
Enqin Li ◽  
Ren-He Xu ◽  
...  

Radiation-induced brain injury (RI) commonly occurs in patients who received head and neck radiotherapy. However, the mechanism of RI remains unclear. We aimed to evaluate whether pyroptosis was involved in RI and the impact of mesenchymal stem cells (MSCs) on it. BALB/c male mice (6–8 weeks) were cranially irradiated (15 Gy), and MSCs were transplanted into the bilateral cortex 2 days later; then mice were sacrificed 1 month later. Meanwhile, irradiated BV-2 microglia cells (10 Gy) were cocultured with MSCs for 24 hours. We observed that irradiated mice brains presented NLRP3 and caspase-1 activation. RT-PCR then indicated that it mainly occurred in microglia cells but not in neurons. Further, irradiated BV-2 cells showed pyroptosis and increased production of IL-18 and IL-1β. RT-PCR also demonstrated an increased expression of several inflammasome genes in irradiated BV-2 cells, including NLRP3 and AIM2. Particularly, NLRP3 was activated. Knockdown of NLRP3 resulted in decreased LDH release. Noteworthily, in vivo, MSCs transplantation alleviated radiation-induced NLRP3 and caspase-1 activation. Moreover, in vitro, MSCs could decrease caspase-1 dependent pyroptosis, NLRP3 inflammasome activation, and ROS production induced by radiation. Thus, our findings proved that microglia pyroptosis occurred in RI. MSCs may act as a potent therapeutic tool in attenuating pyroptosis.


2017 ◽  
Vol 126 (04) ◽  
pp. 249-254
Author(s):  
Feng Liu ◽  
Peng yu-huan ◽  
Li Qiang ◽  
Liu Chanchan

AbstractTo study the effects of inducement on the expression of mouse embryonic stem cells SF1-G imprinted genes, Kcnq1 and Cdkn1c during the course of differentiation into islet-like cells in vitro. Mouse embryonic fibroblasts (MEFs) were isolated from pregnant mice embryos and fibroblast feeder cells were prepared by treating 3–5th generations MEFs with Mitomycin C. Moreover, mouse embryonic stem cells were induced to differentiate into islet-like cells directly. RT-PCR and Immunofluorescence staining were used to test the expression of islet cell-specific markers. Cells were collected at various stages throughout the differentiation process and the imprinted genes Kcnq1 and Cdkn1c were tested by reverse transcription-polymerase chain reaction fragment length polymorphism (RT-PCR/RFLP). In the present study, we found that cells appear islet cell-specific gene expression. Furthermore, immunofluorescence shows us that the islet cell-specific hormone protein can be measured at stage, which confirms that the embryonic stem cells can be successfully induced into islet-like cells in vitro. RT-PCR/RFLP analysis showsthat imprinted genes Kcnq1 and Cdkn1c are biallelic expression in the differentiated cells, suggestive of loss of imprinting (LOI), while these genes demonstrate maternal monoallelic expression in the undifferentiated cells’ continued subculture; this marks the maintenance of imprinting (MOI). Our data indicate that mouse embryonic stem cells are induced into islet-like cells in vitro. The gene imprinting status of Kcnq1 and Cdkn1c may be changed in differentiated cells during the induction in vitro.


Sign in / Sign up

Export Citation Format

Share Document