32 PREGNANCY OF EQUINE CLONED EMBRYOS MICROINJECTED WITH PLURIPOTENCY INDUCING GENES (Oct4, Sox2, c-Myc, K1f4)

2014 ◽  
Vol 26 (1) ◽  
pp. 130
Author(s):  
R. Olivera ◽  
R. Jordan ◽  
C. Alvarez ◽  
M. Radrizzani ◽  
G. Vichera

Animal cloning is a high impact tool for scientific and economical production, but still with inefficient results. The efficiency of the cloning process depends on the state of differentiation of the donor cell. An adult equine somatic cell can be differentiated to a pluripotent stem cell (iPSC) inducing the expression of certain transcription factors (Oct4, Sox2, c-Myc, and K1f4; Breton et al. 2013). The objective of this work was to assess the effect of the intracytoplasmic injection of pluripotency inducing genes on embryo development and pregnancy rates of equine cloned embryos. Cumulus–oocyte complexes (COC) were obtained from slaughterhouse ovaries. Oocyte collection and maturation procedure were performed as described by Lagutina et al. (2007). After the removal of cumulus cells, oocytes showing first polar body were microinjected with a mixture 1/3 of plasmids/liposomes (Mi group). The plasmid used was the pEP4-E02s-EM2k, which encodes the human genes Oct4, Sox2, Myc, and K1f4. The DNA concentration was adjusted to 0.5 μg mL–1. Microinjected oocytes were enucleated using the zona free method. Adult male skin fibroblasts from the same animal were used as donor nucleus cells. These fibroblasts were attached to the ooplasts with phytohemagglutinin and then fused with an electric pulse. Activation was performed using 8.7 mM ionomycin for 4 min, followed by culture for 4 h in a combination of 1 mM 6-DMAP and 5 mg mL–1 cycloheximide. Zona free reconstructed embryos (ZFRE) were cultured for 7 to 8 days in DMEM-F12 in the well of the well (WOW) system, aggregating 3 embryos per well. A control group (CC group) of not microinjected embryos was included. Cleavage and blastocyst development was assessed at Days 2 and 7, respectively. Transcervical transfer of 49 Day 7 to 8 blastocysts was performed 6 days after ovulation. The mares received 2 blastocysts per transfer. Pregnancy was diagnosed by transrectal ultrasonography 15 days after ovulation. Cleavage and blastocyst rates were analysed by Chi-squared test and pregnancy rate by Fisher test (P < 0.05). Cleavage was 92.1% (n = 58/63) for the Mi group and 90.4% (n = 868/960) for the CC group. Blastocyst rate was statistically higher per well, 28.6% (n = 6/21) v. 13.4% (n = 43/320) but not per oocyte, 9.5% (n = 6/63) v. 4.5% (n = 43/960), for the Mi and CC groups, respectively. Pregnancy rate was 17% (n = 1/6) for the Mi group and 7% (n = 3/43) for the CC group. No twin pregnancies were found and all the pregnancies are still ongoing. The higher blastocyst rates obtained with the embryos microinjected with pluripotency inducing genes compared with the control group showed an improvement in embryo quality. In conclusion, the data presented indicate that the intracytoplasmic microinjection of pluripotency inducing genes in equine zona free cloned embryos improved blastocyst rates on a per well basis and showed a tendency to improve the pregnancy rates. The expression of the Oct4, Sox2, c-Myc, and K1f4 genes could be probably generating better reprogrammed donor nucleus compared with adult differentiated cells used in conventional cloning.

2007 ◽  
Vol 19 (1) ◽  
pp. 166
Author(s):  
X. J. Yin ◽  
H. S. Lee ◽  
E. G. Choi ◽  
X. F. Yu ◽  
B. H. Choi ◽  
...  

Domestic cats are a useful research model to develop assisted reproductive technologies for the conservation of endangered felids. Previously, we produced cloned offspring derived from somatic cell nuclear transfer of ear skin fibroblasts obtained from a deaf, odd-eyed, male Turkish Angora. The aim of this study was to assess the cloning efficiency of the fibroblasts derived from a cloned cat. Fibroblast cell lines were established from 6-mm skin biopsies taken from a deaf, odd-eyed, male Turkish Angora and his clone. The protocol for nuclear transfer was described previously (Yin et al. 2005 Reproduction 129, 245–249). Briefly, cumulus cells were removed from the ova by gently pipetting them into TCM-199 supplemented with 0.1% hyaluronidase. The denuded oocytes were then cultured in TCM-199 supplemented with 0.2 �g mL-1 demecolcine for 1 h and placed into TCM-199 containing 5 �g mL-1 cytochalasin B and 0.2 �g mL-1 demecolcine. The first polar body and protruded chromatin plate were removed with a beveled micropipette. Micromanipulation was used to place a single donor cell nucleus into the perivitelline space of enucleated ova. The ovum-cell couplets were fused and pulse activated. The activated couplets were cultured in 500 �L of CRI medium supplemented with 0.3% BSA for 2 days. The cleaved embryos were cultured in CRII medium supplemented with 10% FBS for 5 days. The cleavage and blastocyst development rates were 38.5% and 3.5% for second generation cloned embryos. A total of 310 second generation cloned embryos were transplanted to 9 surrogates, and 2 pregnancies at 30 days were determined by ultrasonography. One pregnancy was aborted at 40 days of gestation; the second pregnancy continued. These results indicate that the serial cloning of a cat can be generated efficiently up until pregnancy. This work was supported by KOSEF (grant #M10525010001-05N2501-00110).


2021 ◽  
Author(s):  
Olga Tepla ◽  
Zinovij Topurko ◽  
Jaromir Masata ◽  
Simona Jirsová ◽  
Martina Moosova ◽  
...  

Abstract This research demonstrates how a mutual position of the human oocytes meiotic spindle (MS) and the first polar body (PB) correlates with the probability of obtaining high-quality embryos (utilization rates) and high pregnancy rates after intracytoplasmic sperm injection (ICSI). The quality of optically birefringent MS and the angle (α) between MS and PB (evaluated using polarizing microscopy), were used to indicate oocyte maturation and appropriate time for fertilization. In this study, 124 patients undergoing in vitro fertilization (IVF) whose oocytes were evaluated by MS visualization had a significantly higher clinical pregnancy rate (38% vs 26%) and utilization rate (54% vs 38%) when compared to the control group, using one standard IVF cycle without MS visualization. Significantly, in group of 79 patients > 35 years old, 34% became pregnant when α was evaluated and ICSI time adjusted to achieve the full oocyte maturation, compared to only 18% in the control group. The number of high-quality embryos in the MS visualized group was significantly higher compared to the control group, increasing the probability of pregnancy. Based on this research, we propose to incorporate monitoring the mutual position of MS and PB as a valid marker of embryo quality which can significantly improve pregnancy rate.


Zygote ◽  
2012 ◽  
Vol 21 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Guixue Feng ◽  
Deshun Shi ◽  
Shufang Yang ◽  
Xiaoli Wang

SummaryThe present study was undertaken to establish an effective method for in vitro maturation (IVM) of denuded oocytes (DOs) by simulating the ovarian three-dimensional status in vivo using buffalo ovarian tissues or cumulus cells, so as to provide a model for investigating the mechanisms of oocyte maturation. Buffalo cumulus–oocyte complexes from ovaries taken at slaughter were denuded by pipetting, and then allocated randomly into four groups for IVM by direct culture in maturation medium (M1, control group), co-culture with a monolayer of cumulus cells (M2), embedded in cumulus cell clumps (M3) and ovarian tissue (M4) for 24 h. The nuclear maturation of DOs was assessed by the extrusion of the first polar body and the cytoplasmic maturation was evaluated by subsequently developmental capacity after parthenogenetic activation. More DOs matured to MII (56.89%) and developed to blastocysts (25.75%) when they were matured in vitro with M3 in comparison with DOs matured in vitro with M1 (45.14 and 15.97%) and M4 (40.48 and 13.49%). Further detection of gap junctions by injecting Lucifer yellow directly into cytoplasm of matured DOs with adherent cumulus cells and scanning with confocal microscope showed that Lucifer yellow were found in nine out of 11 the adherent cumulus cells in M3, indicating that the gap junctions between oocytes and cumulus cells was reconstructed in vitro. These results indicate that co-culture of DOs embedded in cumulus cell clumps can improve their nuclear and cytoplasmic maturation of DOs, possibly through the reconstruction of gap junctions in vitro.


2007 ◽  
Vol 19 (1) ◽  
pp. 301 ◽  
Author(s):  
T. Horiuchi ◽  
M. Takenaka ◽  
C. Kani ◽  
C. Emuta ◽  
Y. Ogata ◽  
...  

In cattle, activation treatment after intracytoplasmic sperm injection (ICSI) is required to improve cleavage and blastocyst rates (Horiuchi et al. 2002 Theriogenology 57, 1013–1024). The reason why the exogenous activation treatment in bovine ICSI is needed to promote cleavage and blastocyst development is not clear. The objective of this study was to examine the effect of activation treatment on sperm aster formation, cleavage, and blastocyst development of in vivo- and in vitro-matured bovine oocytes following ICSI. In vivo-matured oocytes were collected using transvaginal devices under ultrasound guide at about 29 h after GnRH injection from Japanese Black cows superstimulated with a total 19 mg FSH (Antrin�; Denka Pharmaceutical Co., Kanagawa, Japan) divided into twice daily over 3 days, and treated with 750 �g cloprostenol (Estramate�; Sumitomo Chemical Co., Tokyo, Japan). In a total of 8 aspiration sessions, 131 oocytes were collected; of 116 oocytes with expanded cumulus cells, 84 (72%) had a first polar body and were used for ICSI. On the other hand, in vitro-matured bovine oocytes were prepared by culturing immature follicular oocytes derived from abattoir ovaries. Bull spermatozoa, immobilized by scoring their tails, were injected into in vivo- or in vitro-matured oocytes. At 4 h after ICSI, the oocytes were treated with or without 7% ethanol for 5 min for activation. The injected oocytes were fixed at 8 h after ICSI, and sperm aster formation was examined by using specific antibodies and immunofluorescence microscopy. Data were analyzed by the chi-square test in all experiments. The rate of sperm aster formation in in vivo-matured oocytes was similar regardless of activation treatment (71% vs. 65%), but the rate in in vitro-matured oocytes was significantly (P &lt; 0.05) higher in the group receiving activation treatment than in the non-activation group (57% vs. 19%). Cleavage (88% vs. 88%) and blastocyst rates (59% vs. 47%) of in vivo-matured oocytes after ICSI were also similar, regardless of activation treatment, but cleavage (72% and 20%) and blastocyst rates (19% and 7%) of in vitro-matured oocytes were significantly (P &lt; 0.05) higher in the group receiving activation treatment than in the non-activation group. Moreover, the blastocyst rate of in vivo-matured oocytes was significantly (P &lt; 0.05) higher than the rate in in vitro-matured oocytes. These results show that activation treatment after ICSI of in vivo-matured bovine oocytes is not necessary for cleavage and blastocyst development, and suggest that the necessity of activation treatment in bovine ICSI has relevance to in vitro maturation of bovine oocytes.


2010 ◽  
Vol 22 (1) ◽  
pp. 199
Author(s):  
L.-Y. Sung ◽  
C.-H. Chen ◽  
T.-A. Lin ◽  
L.-J. Sung ◽  
H.-Y. Su ◽  
...  

This study was designed to examine the effect of rabbit oocytes collected from oviducts v. follicles on the developmental potential of nuclear transplant (NT) embryos. Rabbit oocytes were flushed from the oviducts (oviduct oocytes) or collected from the ovarian Graafian follicles(follicular oocytes) of superovulated does at 12 h post-hCG injection (hpi). Cumulus cells were then removed from the oocytes by incubation in 0.5% hyaluronidase and pipetting. Oocyte enucleation was conducted in TCM-199 +10% fetal bovine serum (FBS) and confirmed under fluorescent microscopy. Skin fibroblasts from an adult rabbit were prepared and cultured to passage 8 to 10 before use as nuclear donors. A donor cell with a diameter of approximately 15 to 19 μm was transferred into the perivitelline space of an enucleated oocyte and subsequently fused with the recipient oocyte by applying 3 direct current pulses at 3.2 kV cm-1 for 20 μs per pulse. Fused oocytes were activated by the same electrical stimulation described above, and then cultured in TCM-199 + 10% FBS containing 2.0 mM 6-DMAP and 5 μg mL-1 cycloheximide for 1 h. Cloned embryos were cultured in 2.5% FBS B2 medium in 5% CO2 and 95% humidified air at 38.5°C for 3 d. Embryo development to cleavage (2- to 4-cell), 8-cell, and morula/blastocyst (Mor/BL) stages was evaluated. The data were analyzed by the General Linear Model procedure (SPSS 11.0, SPSS Inc., Chicago, IL, USA).The total number of oocytes collected per animal was 27.6 ± 1.3, with 47.8% from oviducts, and 52.2% from follicles. The percentage of oviduct oocytes that showed the first polar body was 98.3% (n = 150) at the time of collection, whereas follicular oocytes only had 54.8% at collection (n = 93), but it reached 92.4% when immature follicular oocytes were cultured for 3 h in vitro. The enucleation rates were similar between the follicular (82.7%) and the oviduct (79.1%) groups. Table 1 shows that a significantly higher fusion rate was found in follicular oocytes compared with that in the oviduct group (90.8 v. 63.4%; P < 0.05). There was no difference in the cleavage rate and Mor/BL development between the 2 groups, although the 8-cell(78.4 v. 63.9%; P = 0.11) and the overall efficiencies (30.6% v. 17.9%; P = 0.14) appeared higher in the follicular group. These results demonstrated that rabbit follicular oocytes at 12 hpi have potential equivalent or maybe better (fusion) than that with oviduct oocytes for promoting the preimplantational development of NT embryos. Table 1.The effect of follicular and oviduct oocytes on the development of rabbit NT embryos Supported by NIH1R43 RR023774-01A1 and 5R44HL091605-03.


2006 ◽  
Vol 18 (2) ◽  
pp. 249 ◽  
Author(s):  
N. Maedomari ◽  
N. Kashiwazaki ◽  
M. Ozawa ◽  
A. Takizawa ◽  
J. Noguchi ◽  
...  

It is generally accepted that cumulus cells (CCs) support the nuclear maturation of immature oocytes in mammals. However, the precise mechanism of interaction between cumulus cells and oocytes has not been clarified. Furthermore, the role of cumulus cells in embryonic development has not been reported. In the present study, the effect of denuding cumulus cells from porcine oocytes on oocyte maturation, ertilization, and their subsequent development to the blastocyst stage was examined in vitro. In vitro maturation, fertilization, and culture were carried out as previously reported (Kikuchi et al. 2002 Biol. Reprod. 66, 1033-1041). Porcine cumulus-oocyte complexes (COCs) were collected; some of them were completely denuded of cumulus cells immediately after the collection (DO-0 group). The remaining intact COCs and the DO-0 oocytes were cultured for 24 h in the presence of dbcAMP and hormones. After the initial culture, some of the intact COCs were denuded either completely (DO-24 group) or partially (H-DO-24 group). Additionally, some of DO-24 oocytes were co-cultured with the cumulus cells removed at 0 h and pre-cultured for 24 h (DO-24 + CCs group). The denuded oocytes in each experimental group and intact COCs (control) were further cultured for total 46 h. The remaining oocytes with a first polar body were either examined for the levels of intracellular glutathione (GSH) or fertilized in vitro with frozen-thawed boar spermatozoa. The inseminated oocytes were cultured and examined for their fertilization status after 10 h and for their developmental competence after 6 days. Data were analyzed by ANOVA, followed by the Duncan's multiple range tests. The maturation rates of all denuded groups were significantly lower (P < 0.05; 34.3 to 45.0%) than that of the control group (64.5%). Intracellular GSH concentrations of all denuded groups were also significantly lower (P < 0.05; 4.03 to 7.00 pmol/oocyte) than that of the control group (9.60 pmol/oocyte); however, the GSH level of H-DO-24 oocytes was significantly higher (P < 0.05) than the GSH levels in the other denuded groups. Male pronuclear formation rates of completely denuded oocytes (DO-0, DO-24, and DO-24 + CCs groups) were significantly lower (P < 0.05; 41.4 to 59.3%) than those of the control (89.4%) and the H-DO-24 (80.0%) groups. The blastocyst rate of the control group was significantly higher (P < 0.05; 19.9%) than that of H-DO-24 group (11.6%), and these rates were significantly higher (P < 0.05) than those of the completely denuded groups (3.0 to 4.5%). The results suggest that the presence of cumulus cells during maturation culture improves nuclear maturation of oocytes and plays an important role in embryonic development to the blastocyst stage in vitro.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiao Liang ◽  
Xue Tong ◽  
Hui-lan Du ◽  
Ming He ◽  
Yu Zhang ◽  
...  

Background. Bushen Tiaojing Decoctions (BSTJ-II-D and BSTJ-III-D) are used to assist pregnancy in clinical practice. In this study, we explored the ability of sequential administration of BSTJ-II-D and BSTJ-III-D to promote cumulus cell (CC) expansion and its underlying mechanisms in controlled ovarian hyperstimulation (COH) mice. Methods. Kunming mice were randomly divided into three groups. The normal group was injected intraperitoneally with saline, and distilled water was administered orally by gavage. As the COH model, mice were injected with GnRHa, eCG, and hCG. Subsequently, the BSTJD group received BSTJ-II-D and BSTJ-III-D orally by gavage, while the control group received distilled water. We evaluated CC expansion and oocyte first polar body (PB1) extrusion under a stereomicroscope. Serum levels of follicle-stimulating hormone (FSH) were detected by radioimmunoassay. The expression of the CC expansion-related factors PTX3 and PTGS2 was detected by immunofluorescence, western blot, and quantitative real-time-polymerase chain reaction analyses (qRT-PCR). Expression of p-MAPK14, p-MAPK3/1, MAPK14, and MAPK3/1 was detected by western blot analysis. Results. Sequential administration of BSTJ-II-D and BSTJ-III-D promoted cumulus expansion and oocyte PB1 extrusion and upregulated PTX3 and PTGS2 expression at the mRNA and protein levels. Furthermore, the levels of p-MAPK14/MAPK14, p-MAPK3/1/MAPK3/1 proteins, and serum FSH in the BSTJD group were higher than those in the normal and control groups. Conclusions. Sequential administration of BSTJ-II-D and BSTJ-III-D promotes cumulus expansion and oocyte maturation in COH mice by increasing FSH expression and activating the MAPK14 and MAPK3/1 signalling pathways, thereby increasing expression of PTX3 and PTGS2.


Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 416-425 ◽  
Author(s):  
Yan Yun ◽  
Peng An ◽  
Jing Ning ◽  
Gui-Ming Zhao ◽  
Wen-Lin Yang ◽  
...  

SummaryOocyte-specific linker histone, H1foo, is localized on the oocyte chromosomes during the process of meiotic maturation, and is essential for mouse oocyte maturation. Bovine H1foo has been identified, and its expression profile throughout oocyte maturation and early embryo development has been established. However, it has not been confirmed if H1foo is indispensable during bovine oocyte maturation. Effective siRNAs against H1foo were screened in HeLa cells, and then siRNA was microinjected into bovine oocytes to down-regulate H1foo expression. H1foo overexpression was achieved via mRNA injection. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that H1foo was up-regulated by 200% and down-regulated by 70%. Based on the first polar body extrusion (PB1E) rate, H1foo overexpression apparently promoted meiotic progression. The knockdown of H1foo significantly impaired bovine oocyte maturation compared with H1foo overexpression and control groups (H1foo overexpression = 88.7%, H1foo siRNA = 41.2%, control = 71.2%; P < 0.05). This decrease can be rescued by co-injection of a modified H1foo mRNA that has escaped from the siRNA target. However, the H1e (somatic linker histone) overexpression had no effect on PB1E rate when compared with the control group. Therefore we concluded that H1foo is essential for bovine oocyte maturation and its overexpression stimulates the process.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
S Watanabe ◽  
M Tomida ◽  
S Suzuki ◽  
Y Matsuda ◽  
K Yoshikai ◽  
...  

Abstract Study question When does blastomere exclusion from compaction increase and what effect does it have on the embryo? Summary answer More blastomere were excluded from compaction in embryos with irregular cleavage, resulting in lower blastocyst development rates, but no decrease in pregnancy rates at transfer. What is known already It has been reported that many of the chromosome analysis results of blastomere excluded from compaction were aneuploid, and pointed out that this exclusion may be related to the repair of blastocyst euploidy, but the effect of the number of excluded blastomere has not been reported. Study design, size, duration This is a retrospective study of 578 embryos that developed into morula with time-lapse monitoring by EmbryoScope (Vitrolife) in 2018–2019. Participants/materials, setting, methods The target embryos were classified into two groups: embryos with normal first and second cleavage (normal cleavage group) and embryos with irregular cleavage (dynamics of one cell dividing into three or more cells), called “direct cleavage”, at either cleavage (DC group), and the number of blastomere excluded from compaction during morula formation was recorded and compared. The blastocyst development rate and single blastocyst transfer pregnancy rates of the two groups were compared. Main results and the role of chance There are 286 in the normal cleavage group and 292 in the DC group. The mean number of excluded blastomere was 0.76 and 3.55, respectively, which was significantly higher in the DC group (P &lt; 0.01). Good blastocyst (Gardner classification 4 or higher) development rate was 84.5% (239/283) and 65.8% (181/275), respectively, and high grade blastocyst (Gardner classification BB or higher) development rate was 43.9% (105/239) and 14.9% (27/181) of them, both significantly higher in the normal cleavage group (P &lt; 0.01). The single blastocyst transfer pregnancy rates were 31.6% (25/79) and 32.4% (11/34), and the miscarriage rates were 24.0% (6/25) and 27.3% (3/11), respectively, neither was there a significant difference between the two groups. So, direct cleavage increased the number of blastomere excluded from compaction, decreased the rate of morula to good blastocyst development and reduced blastocyst grade, but did not affect blastocyst transfer pregnancy rate and miscarriage rate. Limitations, reasons for caution Please note that all target embryos must have developed into morula or larger (embryos that did not develop into morula will not be included in the study). Wider implications of the findings: Severe chromosomal aberrant blastomeres formed by direct cleavage were excluded from compaction, and the blastocyst development rate decreased due to a decrease in the amount of viable cells, but it is suggested that this blastomere exclusion mechanism is not related to euploidy after blastocyst development. Trial registration number Not applicable


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Yue-Liang Zheng ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
Qing-Yuan Sun ◽  
Da-Yuan Chen

This study assessed the effects of oocyte age, cumulus cells and injection methods on in vitro development of intracytoplasmic sperm injection (ICSI) rabbit embryos. Oocytes were recovered from female rabbits superovulated with PMSG and hCG, and epididymal sperm were collected from a fertile male rabbit. The oocyte was positioned with the first polar body at 12 o'clock position, and a microinjection needle containing a sperm was inserted into the oocyte at 3 o'clock. Oolemma breakage was achieved by aspirating ooplasm, and the aspirated ooplasm and sperm were re-injected into the oocyte. The injected oocytes were cultured in M199 medium containing 10% fetal calf serum at 38 °C with 5% CO2 in air. The results showed that oocytes injected at 1 h post-collection produced a higher (p<0.05) fertilization rate than those injected at 4 or 7 h post-collection. Blastocyst rate in the 1 h group was higher (p<0.05) than in the 7 h group. Denuded oocytes (group A) and oocytes with cumulus cells (group B) were injected, respectively. Rates of fertilization and development of ICSI embryos were not significantly different (p<0.05) between the two groups. Four ICSI methods were applied in this experiment. In methods 1 and 2, the needle tip was pushed across half the diameter of the oocyte, and oolemma breakage was achieved by either a single aspiration (method 1) or repeated aspiration and expulsion (method 2) of ooplasm. In methods 3 and 4, the needle tip was pushed to the oocyte periphery opposite the puncture site, and oolemma breakage was achieved by either a single aspiration (method 3) or repeated aspiration and expulsion (method 4) of ooplasm. Fertilization rate in method 2 was significantly higher (p<0.05) than in methods 1 and 3. Blastocyst rates were not significantly different (p<0.05) among methods 1, 3 and 4, but method 2 produced a higher (p<0.05) blastocyst rate than method 3.


Sign in / Sign up

Export Citation Format

Share Document