143 JAPANESE BLACK (WAGYU) CATTLE MULTIPLE-OVULATION EMBRYO TRANSFER: FOLLICLE-STIMULATING HORMONE SOURCE IN A CASE STUDY IN SOUTH CHINA

2015 ◽  
Vol 27 (1) ◽  
pp. 163
Author(s):  
F. Du ◽  
X. Ma ◽  
B. Xu ◽  
Y. Wang ◽  
Y. Li ◽  
...  

The Japanese Black cattle (Wagyu) plays a significant part in the Japanese beef industry because it is numerically the largest breed group and comprises ~93% of the national purebred beef cow herd. Japanese Black cattle are genetically predisposed to intense marbling and to a high percentage of unsaturated fat resulting in a meat characterised by both high quality and price on the market. Like other breeds, genetic improvement and production traits in Wagyu can be fostered by the implementation of traditional reproductive strategies such as multiple-ovulation embryo transfer. A multiple-ovulation embryo transfer case study was performed in a leading production centre in Hainan island, South China. Donors (n = 40) were split into 2 groups receiving either a total dose of 400 mg of FSH Folltropin (FSH USA; Folltropin Bioniche Inc., USA; n = 24), or 10 mg of an FSH formulation produced from the Institute of Zoology of the Chinese Academy of Sciences (FSH CHN; n = 16). In both cases, dosages were equally distributed over a 4-day administration schedule. Both donors and recipients (198 heifers) were synchronized for fixed-time embryo transfer (ET) and AI, respectively, by adopting the Ovsynch protocol. Such protocol consists of GnRH administration at Day 0, followed by prostaglandin administration at Day 7 and a second administration of GnRH at Day 9. Artificial insemination was performed on donor animals at 12 and 24 h from the last GnRH administration, whereas for recipient synchronization receiving fresh embryos, the second GnRH administration was given at the time of second AI on donors, and ET was performed 7 days following the first AI. Final synchronization at the time of ET, judged by the ultrasonic presence of a functional corpus luteum, was 53% (105/198). The following parameters for FSH USA and FSH CHN were found to be not significantly different (Student's t; mean ± s.e.): i) ovulations (10.5 ± 1.2 v. 8.5 ± 1.2; P = 0.2); ii) embryos (6.3 ± 1.2 v. 5.1 ± 1.1; P = 0.5), and iii) embryos from ovulated donors (6.8 ± 1.3 v. 5.8 ± 1.1; P = 0.6). Recovered embryos from the 2 groups were also not different: i) degenerated embryos (1.0 ± 0.4 v. 0.8 ± 0.2; P = 0.6); ii) morula (4.0 ± 0.8 v. 2.6 ± 0.5; P = 0.1), and iii) early blastocysts (4.0 ± 1.2 v. 3.3 ± 0.5; P = 0.6). Blastocysts were recovered only from donors treated with FSH USA. Out of 233 recovered embryos, 34 were transferred as fresh and 71 as frozen/thawed. Pregnancy rate at 60 days following ET for fresh and frozen/thawed embryos was 47.1 and 35.2%, respectively (P = 0.2). Within frozen embryos, pregnancy rates derived from transferred morulas and blastocysts were 25 and 45.5% (P = 0.07). When considering the two sources of hormones, overall pregnancy rates were similar between the two groups (28/71, 39.4% v. 13/34, 38.2%; P = 0.9). Finally, pregnancy rates from the transfer of fresh embryos (9/21, 42.8% v. 7/13, 53.8%; P = 0.6) and frozen/thawed embryos (19/50, 38% v. 6/21, 23.8%; P = 0.6) were also not different. In conclusion, all parameters in this study did not differ between the 2 sources of FSH; however, a lower incidence of degenerated embryos and a higher pregnancy rate following transfer of frozen/thawed embryos occurred when FSH USA was used in donor animals.

2007 ◽  
Vol 19 (1) ◽  
pp. 297
Author(s):  
S. Li ◽  
W. Yu ◽  
J. Fu ◽  
Y. Bai ◽  
F. Jin ◽  
...  

Data collected from commercial embryo transfer programs in 63 farms in China during June 2002 to December 2005 was analyzed to examine the effects of various factors (biopsy, freezing, sample size, embryo development and quality, in vitro culture, and recipient quality) on pregnancy rates of in vivo-biopsied embryos. Embryos were flushed from superovulated dairy cattle and subjected to a biopsy for sexing determination using protocols and sexing kits supplied by AB Technology Ltd. Fresh embryos were implanted on the same day or frozen with AG freeze medium (AB Technology Ltd., Pullman, WA, USA) for later transfer. Recipients were synchronized with CIDA + PG protocols. Embryos were cultured in 6-well dishes containing 1.3 mL of holding medium (AB Technology Ltd.) in each well at room temperature (20–25�C) for examination of embryo survival in vitro. The chi-square test was used in statistic analysis. The implantation of fresh embryos after biopsy did not affect pregnancy rates (49.6%, 257/518) compared to that of non-biopsied fresh and frozen–thawed embryo groups (52.9%, 47/140 and 46.6%, 177/380, respectively). However, for biopsied embryos subjected to frozen and thawed procedures before implantation, particularly for those subjected to the removal of a larger biopsy, a reduced pregnancy rate was observed (41.8%, 297/710; P < 0.01). Pregnancy rates among biopsied embryos at 3 different development stages (morula-early blastocyst, blastocyst, and expanded blastocyst) were not different. Similar results were found between embryo groups of grade 1 and 2. A significant decrease in pregnancy rate (0/10) was observed with embryos held in vitro for a longer period of time (>5 h), suggesting detrimental effects of in vitro conditions on embryo survival. The highest pregnancy rate (68.0%) was observed in recipients synchronized for the first time before being implanted with biopsied embryos. Significant decreases in such rates were found in recipients synchronized for the second or third times or those with an abortion history at the first or second synchronization-implantation treatment (P < 0.01). Better pregnancy rates (45.6%, 41/90; 46.1%, 76/165; and 45.5%, 5/11) were obtained for recipients implanted with biopsied embryos at Days 7.5, 8.0, and 8.5 post-heat detection, respectively, compared to 16% at Day 7 (3/18, P < 0.05). It is concluded that mechanical treatment (cutting) does not reduce the survival of biopsied embryos; however, cryopreservation reduces their ability to survive in vivo. The analyses also suggest that holding embryos in vitro should not be longer than 5 h unless more favorable in vitro conditions can be provided. To achieve better results of implantation of biopsied embryos, embryo transfer should be performed during 7.5–8.5 days post-estrus, and the healthy recipients synchronized for the first time should be used.


2017 ◽  
Vol 29 (1) ◽  
pp. 157
Author(s):  
T. Nishisouzu ◽  
A. Abe ◽  
S. Matoba ◽  
O. Dochi ◽  
K. Okamura

Despite the rapid expansion of in vitro embryo production (IVP) technology for genetic improvement in the cattle industry in the last decades, pregnancy rates by the transfer of IVP embryos are still lower than those derived from in vivo-produced embryos. The objective of this study was to analyse factors affecting pregnancy rates after the transfer of IVP Japanese Black cattle embryos under farm conditions. Holstein heifers (n = 4,475) and cows (n = 8,541) were selected as recipients. Most cows (80%) were managed in tie-stall barns and most heifers (80%) were managed in pens. Embryo transfers were performed for 9 years, from 2004 to 2012. The embryos were produced from oocytes derived from a local abattoir and semen from 14 proven bulls by the Livestock Improvement Association of Japan (Hamano and Kuwayama 1993 Theriogelogy 39, 703–712). The fresh IVP embryos (quality; IETS code 1) that reached the blastocyst stage after 7 to 8 days (insemination = Day 0) were transported by an airplane (2 h) and subsequently by a car (1.5 h). Embryos were non-surgically transferred to each recipient on Day 7 to 9 of their natural oestrous cycle on farms. Pregnancy was diagnosed on Day 40 to 60 after oestrus. Pregnancy results were statistically analysed using the GLM procedures of SAS. The following variables were included in the model: recipient parity (0, 1, 2, or 3), day (7, 8, or 9) of the oestrous cycle at the time of embryo transfer, oestrus behaviour (increased activity observed by farmers), presence of mucus at oestrus, presence of blood after oestrus, and year (1, 2, 3, 4, 5, 6, 7, 8, or 9) and season (April–June as spring, July–September as summer, October–December as fall, or January–March as winter) of embryo transfer. The Bonferroni correction was used to counteract the problem of multiple comparisons. Heifers had significantly higher pregnancy rates than cows (51.0% v. 37.9%, respectively; P < 0.01), and first parity cows had higher pregnancy rates than third parity cows (42.9% v. 35.7%, respectively; P < 0.01). Pregnancy rates were significantly higher in recipients that received an embryo transfer on Day 8 of their oestrous cycle, than on Day 7 (46.6% v. 42.4%, respectively; P < 0.01). Recipients without oestrus behaviour had higher pregnancy rates than those with oestrus behaviour (46.3% v. 43.4%, respectively; P < 0.01). The presence of mucus and/or blood after oestrus and the season of transfer were not found to significantly affect pregnancy rates. The results of this study indicated that performing IVP embryo transfers on Day 8 of a recipient’s oestrous cycle will improve the pregnancy rate, season does not have an effect on pregnancy rate, and the detection of oestrus by monitoring increased activity is not always reliable and instead should be determined by multiple symptoms on farm conditions.


Author(s):  
Robab Davar ◽  
Soheila Pourmasumi ◽  
Banafsheh Mohammadi ◽  
Maryam Mortazavi Lahijani

Background: The results of previous studies on the effect of low-dose aspirin in frozenthawed embryo transfer (FET) cycles are limited and controversial. Objective: To evaluate the effect of low-dose aspirin on the clinical pregnancy in the FET cycles. Materials and Methods: This study was performed as a randomized clinical trial from May 2018 to February 2019; 128 women who were candidates for the FET were randomly assigned to two groups receiving either 80 mg oral aspirin (n = 64) or no treatment. The primary outcome was clinical pregnancy rate and secondary outcome measures were the implantation rate, miscarriage rate, and endometrial thickness. Results: The endometrial thickness was lower in patients who received aspirin in comparison to the control group. There were statistically significant differences between the two groups (p = 0.018). Chemical and clinical pregnancy rates and abortion rate was similar in the two groups and there was no statistically significant difference. Conclusion: The administration of aspirin in FET cycles had no positive effect on the implantation and the chemical and clinical pregnancy rates, which is in accordance with current Cochrane review that does not recommend aspirin administration as a routine in assisted reproductive technology cycles. Key words: Aspirin, Embryo transfer, Pregnancy rates.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M J Zamora ◽  
I Katsouni ◽  
D Garcia ◽  
R Vassena ◽  
A Rodríguez

Abstract Study question What is the live birth rate after frozen embryo transfer (FET) of slow-growing embryos frozen on day 5 (D5) or on day 6 (D6)? Summary answer The live birth rate after single FET is significantly higher for slow-growing embryos frozen on D5 compared to those frozen on D6. What is known already Most data on the outcomes of blastocyst transfer stem from studies that evaluate fresh transfer from normal growing D5 blastocyst ET. However not all embryos will begin blastulation nor reach the fully expanded stage by D5; those are the slow-growing embryos. Studies that compare D5 to D6 embryos in FET cycles show contradictory results. Some have reported higher clinical pregnancy rates after D5 FET, while others have reported similar outcomes for D5 and D6 cryopreserved blastocyst transfers. There is a lack of evidence regarding the best approach for vitrifying embryos that exhibit a slow developmental kinetic. Study design, size, duration This retrospective cohort study included 821 single FET of slow-growing embryos frozen on D5 or D6, belonging to patients undergoing in vitro fertilization with donor oocytes between January 2011 and October 2019, in a single fertility center. The origin of blastocysts was either supernumerary embryos after fresh embryo transfer or blastocysts from freeze-all cycles. All embryos were transferred 2- 4h after thawing. Participants/materials, setting, methods We compared reproductive outcomes of slow-growing embryos frozen on D5 versus (n = 442) slow-growing embryos frozen on D6 (n = 379). D5 group consisted in embryos graded 0, 1, 2 of Gardner scale and frozen on D5. Similarly, D6 group consisted in embryos graded 3, 4, 5 of Gardner scale (blastocyst stage) and frozen on D6. Differences in pregnancy rates between study groups were compared using a Chi2 test. A p-value &lt;0.05 was considered statistically significant. Main results and the role of chance Baseline characteristics were comparable between study groups. Overall, mean age of the woman was 42.3±5.4 years old; donor sperm was used in 25% of cycles, and it was frozen in 73.2% of cycles. Pregnancy rates were significantly higher when transferring slow D5 embryos compared to D6 for all the pregnancy outcomes analyzed: biochemical pregnancy rate was 27.7% vs 20.2%, p &lt; 0.016; clinical pregnancy rate was 17.5% vs 10.2%, p &lt; 0.004); ongoing pregnancy rate was: 15.7% vs 7.8% (p &lt; 0.001); live birth rate was: 15.4% vs 7.5%, (p &lt; 0.001). These results suggest that when embryos exhibit a slow development behavior (not reaching full blastocysts at D5), waiting until D6 for blastulation and expansion does not improve clinical outcomes. Vitrification at D5 will should the preferred option in cases where the oocyte is assumed of high quality Limitations, reasons for caution The retrospective design of the study is its main limitation. Also, morphology as sole selection criterion for transfer. However, blastocyst morphology is a very good predictor of implantation and pregnancy, and a good indicator of the embryo’s chromosomal status (higher euploidy rate in higher morphological quality blastocysts). Wider implications of the findings: These results can help to the standardization of laboratory protocols. As the decision of vitrifying slow developing embryos on D5 or D6 is made by the laboratory team or by the gynaecologist in agreement with the patient, having an evidence based strategy simplifies patient counselling and decision making. Trial registration number Not applicable


2007 ◽  
Vol 19 (1) ◽  
pp. 220 ◽  
Author(s):  
Y. Aoyagi ◽  
A. Ideta ◽  
M. Matsui ◽  
K. Hayama ◽  
M. Urakawa ◽  
...  

Successful bovine embryo transfer requires synchronization of luteolysis, estrus and ovulation. The objective of the present study was to evaluate the effect of a combination of a PRID, PGF2� and eCG, on estrus synchronization and pregnancy rate in recipient heifers. A PRID� (ASKA Pharmaceutical Co., Ltd., Tokyo, Japan) was inserted into the vagina at random days of the estrous cycle for 7 (n = 35) or 9 (n = 43) days. Two days before removal of the PRID, the heifers were injected with PGF2� IM (2 mL Resipron�-C containing 0.25 mg mL-1 cloprostenol; ASKA). About half of the heifers in each group received 250 IU eCG IM (Serotropin�; ASKA) at the time of PRID removal. Blood was collected several times from the start of treatment for 7 (n = 9) or 9 (n = 9) days and on the day of embryo transfer by jugular venipuncture; plasma was immediately separated and stored at -20�C until assayed for plasma concentrations of estradiol-17α (E2) and progesterone (P4). The E2 and P4 determinations were performed by enzyme immunoassay after extraction by diethyl ether. Pregnancy was determined by ultrasonography on Day 30 (Day 0 = estrus). The rates of successful standing estrus (no. in estrus/PRID inserted), embryo transfer (no. transferred/estrus), and pregnancy (no. pregnancy/transferred) were compared between groups. Data were analyzed by chi-square analysis or Fisher&apos;s PLSD test following ANOVA. Injection of eCG at the time of PRID removal had no significant effect on the rates of successful standing estrus, embryo transfer, or pregnancy (P &gt; 0.05). The proportion of heifers treated for 9 days that exhibited standing estrus (93&percnt;, 40/43) was significantly higher than the proportion of heifers treated for 7 days that exhibited standing estrus (66&percnt;, 23/35, P &lt; 0.01). Of the heifers that were treated for 9 days, the proportion of heifers exhibiting standing estrus within 2 days after the end of treatment was significantly higher (93&percnt;, 37/40) than for heifers that were treated for 7 days (65&percnt;, 15/23; P &lt; 0.01). Pregnancy rates of heifers treated for 9 days (84&percnt;, 32/38) and 7 days (81&percnt;, 17/21) were not significantly different. The E2 : P4 ratio normally increases during follicle growth and CL regression. The plasma E2 : P4 ratio between the time of injection of PGF2&alpha; and the time of PRID removal was significantly higher for heifers that were treated for 9 days than it was for heifers that were treated for 7 days (P &lt; 0.01). These results suggest that a combination of PRID treatment for 9 days and injection of PGF2&alpha; 2 days before PRID removal successfully synchronized estrus in recipient heifers and led to high pregnancy rates following embryo transfer.


2010 ◽  
Vol 22 (1) ◽  
pp. 301
Author(s):  
B. G. Moura ◽  
J. Almeida ◽  
F. L. Lima ◽  
G. Balbi ◽  
R. Calmerani ◽  
...  

The aim of the work was to study the effects of year period, technical team, breed, beef cattle and dairy cattle on the pregnancy rates in fresh embryos used in bovine transfer of IVF programs. The study was carried out at the fertilization laboratory In Vitro Nyltta Britto de Carvalho, in partnership with In Vitro Brazil, located at the Boa Vista farm, Barra do Pirai, during August 2007 to September 2008, seeking subsidies to improve the use of the technique in the field. During that period, aspirations and inovulations in 3 different periods I (August to December), II (January to April), and III (May to September) were carried out. The jobs were accomplished by 9 technical teams (A, B, C, D, E, F, G, H, and I) rendering services to the laboratory, by working with 2 beef breeds (Brahman and Nelore) and 3 dairy breeds (Gir, Girolando, and Holstein). The different breed receivers were synchronized, and in general, from 6 to 8 days after heat, they received embryo transfer, the cervical way, under low epidural anesthesia, where each female received 1 fresh embryo of IVF. All cows were submitted to gestation diagnosis by rectal palpation and ultrasonography, in general, 42 days after embryo transfer. The numbers of embryo transferred and pregnancy rates were submitted to the chi-square test, which presented significant differences (P < 0.05). There were pregnancy rates of 36.25%a (n = 960), 39.83%a (n = 1180), and 32.59%b (n = 919) in the I, II, and III periods, respectively. Among the 9 technical teams, there were verified pregnancy rates (%) of 33.51d (n = 1313), 30.30d (n = 330), 35.00cd (n = 405), 39.24cd (n = 1060), 59.25a (n = 7), 33.33d (n = 24), 53.57bc (n = 28), 43.31c (n = 157), and 58.33ab (n = 12) for A, B, C, D, E, F, G, H, and I teams, respectively. Among breeds there were rates (%) of 36.89ab (n = 412), 34.68b (n = 1286), 35.13ab (n = 74), 38.94a (n = 1140), and 37.80ab (n = 82) for Brahman, Nelore, Gir, Girolando, and Holstein, respectively. In the study, pregnancy rates (%) of 35.21b (n = 1698) in beef cattle and 38.65a (n = 1296) in dairy cattle were observed. The differences in pregnancy rates with respect to the evaluated factors, may be explained by individual, breed, and nutritional variations of the animals. There are few data in the literature with results on the embryo transfer use of IVF bovine under field conditions.


2012 ◽  
Vol 24 (1) ◽  
pp. 167
Author(s):  
A. Shirasawa ◽  
Y. Nakamura ◽  
A. Ideta ◽  
Y. Oono ◽  
M. Urakawa ◽  
...  

Recipient animals for bovine embryo transfer (ET) are routinely selected according to the morphology of the corpus luteum (CL) estimated by rectal palpation. However, rectal palpation is not a precise method of diagnosing the functional status of a CL. Ovarian ultrasonography (US) may be used to improve such diagnoses. The aim of this study was to evaluate the relationship between ultrasonographic images of CL and pregnancy rates after ET in Holstein heifers to determine whether US can be used to select recipients for ET. Recipient heifers (n = 285) were selected by detection of natural oestrus or following oestrus synchronization using a progesterone-releasing intravaginal device (PRID; ASKA Pharmaceutical, Tokyo, Japan). Transrectal US was performed immediately before ET, on Days 6 to 8 of the oestrous cycle (oestrus = Day 0), using a B-mode scanner (HS1500V; Honda Electronics Co. LTD, Aichi, Japan) equipped with a 7.5-MHz linear-array transducer designed for intrarectal placement. A cross-sectional image of the maximal area of the CL and luteal cavity was obtained. The areas of the CL and luteal cavity were each calculated using the formula for the area of an ellipse (height/2 × width/2 × π). (1) Ultrasonic morphology of CL was classified into 3 types: without cavity (n = 128), with cavity (n = 145) and with blood clot (n = 12). (2) The luteal cavity was categorized into 3 groups: small (<100 mm2, n = 93), medium (100 ≤ x < 200 mm2, n = 32) and large (≥200 mm2, n = 20). (3) Luteinized tissue area (total area of CL minus the area of the luteal cavity) was categorized into 3 groups: small (<250 mm2, n = 61), medium (250 ≤ x < 350 mm2, n = 128) and large (≥350 mm2, n = 84). In vivo–produced embryos were transferred nonsurgically into the uterine horn ipsilateral to the CL. Pregnancy was determined by transrectal US on Days 30 to 40 of gestation. The pregnancy rates of each experimental group were analysed by logistic regression. In this study, the pregnancy rate did not differ significantly in each experimental group: (1) without cavity: 77.3% (99/128), with cavity: 75.2% (109/145) and blood clot: 75.0% (9/12); (2) small cavity: 73.1% (68/93), medium: 75.0% (24/32) and large: 85.0% (17/20). The mean area of the cavity was 100.8 ± 110.3 mm2 (mean ± standard deviation) and recipients with 0 to 539.7 mm2 sized cavities had successful pregnancies (observational range was 0 to 539.7 mm2). (3) The pregnancy rates of recipients that had small, medium and large luteinized tissue were 77.0% (47/61), 75.0% (96/128) and 77.4% (65/84), respectively. The mean area of luteinized tissue was 318.9 ± 90.3 mm2 and 155.0 to 620.0 mm2 sized luteinized tissue had pregnancy success (observational range was 132.8 to 620.0 mm2). In conclusion, the results from this study indicate that the presence of a luteal cavity or blood clot has no detrimental effect on pregnancy success after ET in Holstein heifers. Furthermore, no relationship was found between luteinized tissue area at the time of ET and pregnancy rate.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Syuichi Ooki

The purpose of the present study was to examine the effect of single embryo transfer (SET) in assisted reproductive technology (ART) on the reduction of the multiple pregnancy rate. We also estimated the monozygotic (MZ) twinning rates according to the SET diffusion indirectly. A reverse sigmoid curve was assumed and examined using nationwide data of SET from 2007 to 2009 in Japan. The multiple pregnancy rate decreased almost linearly where the SET pregnancy rate was between about 40% and 80% of regression approximation. The linear approximation overestimated multiple pregnancy rates in an early period and underestimated multiple pregnancy rates in the final period. The multiple pregnancy rate seemed to be influenced by the improvement of the total pregnancy rate of ART in the early period and by the MZ twinning after SET in the final period. The estimated MZ twinning rate after SET was around 2%.


2004 ◽  
Vol 16 (2) ◽  
pp. 212 ◽  
Author(s):  
T. Nishisouzu ◽  
M. Sugawara ◽  
S. Aoki ◽  
K. Kishida ◽  
M. Moriyoshi ◽  
...  

Treatments with GnRH and PGF2α for synchronization of ovulation has resulted in acceptable pregnancy rates after fixed-time artificial insemination in dairy cows without estrus detection. The objective of the present study was to evaluate the practicability of ovulation synchronization (Ovsynch, Pursley JR et al. 1995 Theriogenology 44, 915–923) in dairy cattle using GnRH and PGF2α for the embryo transfer recipients. Dairy cattle (cows; n=100, heifers; n=88) were randomly allocated to one of two groups. The control group (cows; n=45, heifers; n=37) was composed of cows in natural estrus. The ovulation synchronization group (cows; n=55, heifers; n=51) was treated with an intramuscular injection of 100μg of GnRH at a random stage of the estrous cycle. Seven days later, the cattle received PGF2α (Cows; 25–30mg) or PGF2α analog (Heifers; 0.5mg) in order to regress the corpora lutea (CL). Forty-eight hours later, cows and heifers received a second injection of 100μg GnRH. Embryo transfer was carried out 7 days after the second injection of GnRH in the ovsynch group and 7 days after estrus in the control group. The cattle judged to have CL 17mm were classified as acceptable recipients. The size of the follicles and the CL were determined to be of estrus stage and embryo transfer by means of ultrasonography. The mean numbers of follicles and CL were analyzed by ANOVA, while pregnancy rates were analyzed by chi-square test. The results are presented in the Table. The proportion of cows and heifers determined to be acceptable embryo transfers was not different between the control group and the ovsynch group. There were no differences in the proportion of acceptable embryo transfers between the control group and the ovsynch group. Follicle diameter at the time of estrus in the control group (cows; 20.7±0.7mm, heifers; 16.8±0.5mm) were significantly larger than that of the ovsynch group (cows; 18.0±1.0mm, heifers; 14.7±0.2mm) (P&lt;0.05). Although CL diameter at the time of embryo transfer in heifers showed no differences between the control group and the ovsynch group (25.0±1.0mm v. 22.8±1.5mm), The CL diameter of the control cow group was larger than that of the ovsynch group (29.8±0.7mm v. 26.1±1.0mm, P&lt;0.05). However, no differences in pregnancy rate were seen between the control group and the ovsynch group. These results suggest that ovsynch can be effectively applied in an embryo transfer program for cattle. Table 1 Proportion of acceptable embryo transfer recipients and pregnancy rate in dairy cattle in the control ovsynch groups


Sign in / Sign up

Export Citation Format

Share Document