72 Protective Effects of C-Phycocyanin on the Developmental Competence of Porcine Parthenotes

2018 ◽  
Vol 30 (1) ◽  
pp. 174
Author(s):  
Y.-J. Niu ◽  
N.-H. Kim ◽  
X.-S. Cui

C-Phycocyanin (CP) is a biliprotein enriched in blue-green algae that is known to possess antioxidant, anti-apoptosis, anti-inflammatory, and radical-scavenging properties in somatic cells. However, the protective effect of CP on porcine embryo developmental competence in vitro remains unclear. In the present study, we investigated the effect of CP on the development of porcine early embryos as well as its underlying mechanisms exposing them to H2O2 to induce oxidative stress. The levels of reactive oxygen species, mitochondrial membrane potential, apoptosis, DNA damage, and autophagy in the blastocysts were observed by staining with 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA), 5,5′,6,6’-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1), terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate (dUTP) nick-end labelling (TUNEL), anti-cytochrome c, and anti-γH2A.X (Ser139), respectively. Colocalization assay of mitochondria and cytochrome c of blastocysts were staining with MitoTracker Red CMXRos and anti-cytochrome c. All data were subjected to one-way ANOVA. Different concentrations of CP (1, 2, 5, 8, 10 µg mL−1) were added to porcine zygote medium 5 (PZM-5, l-glutamine concentration of PZM-3 was modified from 1 to 2 mM) during in vitro culture. The results showed that 5 µg mL−1 CP significantly increased blastocyst formation (62.5 ± 2.1 v. 52.7 ± 2.4; P < 0.05) and hatching rate (10.9 ± 1.9 v. 36.6 ± 5.2; P < 0.05) compared with controls. Blastocyst formation (53.1 ± 2.3 v. 40.1 ± 2.3; P < 0.05) and quality were significantly increased in the 50 µM H2O2 treatment group following 5 µg mL−1 CP addition. C-Phycocyanin prevented the H2O2-induced compromise of mitochondrial membrane potential, release of cytochrome c from the mitochondria, and generation of reactive oxygen species. Furthermore, apoptosis, DNA damage level, and autophagy in the blastocysts were attenuated by supplementation of CP in the H2O2-induced oxidative injury group compared with that in controls. These results suggest that CP has beneficial effects on the development of porcine parthenotes by attenuating mitochondrial dysfunction and oxidative stress.

Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 59-64
Author(s):  
Yuhan Zhao ◽  
Yongnan Xu ◽  
Yinghua Li ◽  
Qingguo Jin ◽  
Jingyu Sun ◽  
...  

SummaryKaempferol (KAE) is one of the most common dietary flavonols possessing biological activities such as anticancer, anti-inflammatory and antioxidant effects. Although previous studies have reported the biological activity of KAE on a variety of cells, it is not clear whether KAE plays a similar role in oocyte and embryo in vitro culture systems. This study investigated the effect of KAE addition to in vitro maturation on the antioxidant capacity of embryos in porcine oocytes after parthenogenetic activation. The effects of kaempferol on oocyte quality in porcine oocytes were studied based on the expression of related genes, reactive oxygen species, glutathione and mitochondrial membrane potential as criteria. The rate of blastocyst formation was significantly higher in oocytes treated with 0.1 µm KAE than in control oocytes. The mRNA level of the apoptosis-related gene Caspase-3 was significantly lower in the blastocysts derived from KAE-treated oocytes than in the control group and the mRNA expression of the embryo development-related genes COX2 and SOX2 was significantly increased in the KAE-treated group compared with that in the control group. Furthermore, the level of intracellular reactive oxygen species was significantly decreased and that of glutathione was significantly increased after KAE treatment. Mitochondrial membrane potential (ΔΨm) was increased and the activity of Caspase-3 was significantly decreased in the KAE-treated group compared with that in the control group. Taken together, these results suggested that KAE is beneficial for the improvement of embryo development by inhibiting oxidative stress in porcine oocytes.


Drug Research ◽  
2019 ◽  
Vol 69 (10) ◽  
pp. 523-527
Author(s):  
Fatemeh Samiei ◽  
Hanieh Sajjadi ◽  
Akram Jamshidzadeh ◽  
Enayatollah Seydi ◽  
Jalal Pourahmad

AbstractRivaroxaban as a small molecule is able to directly and reversibly inhibit the factor Xa. This study was designed to figure out the evaluation effect of rivaroxaban on mitochondria obtained from rat kidneys. We isolated mitochondria from rat kidneys using gradient centrifugation. Then, the toxicity parameters including succinate dehydrogenase (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse and cytochrome c release were measured in kidneys mitochondria following the exposure to rivaroxaban. The results showed that rivaroxaban (1.4 and 2.8 mM) raised the reactive oxygen species (ROS) generation, swelling in the mitochondria, collapse in the mitochondrial membrane potential (MMP) and cytochrome c release in the mitochondria isolated from kidneys. While, rivaroxaban at a higher concentration of 5.6 mM showed the opposite effect compared to other lower concentrations. The results indicate that rivaroxaban may have antioxidant effects at high concentrations. The results suggest that rivaroxaban (5.6 mM) has protective effects against oxidative stress and mitochondrial toxicity.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Scott Canfield ◽  
Danielle Twaroski ◽  
Xiaowen Bai ◽  
Chika Kikuchi ◽  
Zeljko J Bosnjak

Anesthetic Preconditioning (APC) protects the myocardium from ischemia/reperfusion injury. The cardioprotective effects of APC is diminished or even eliminated in individuals with diabetes mellitus and/or hyperglycemia. The development of patient-specific induced pluripotent stem cells and their differentiation capability has provided us with an in vitro model to study the inefficiency of APC in these individuals.To investigate the underlying mechanisms involved in the attenuation of APC in both diabetic individuals and in hyperglycemia we utilized cardiomyocytes derived from Type 2 diabetic patient and healthy individual iPSCs, (T2DM-iPSCs and N-iPSCs, respectively). Contracting cardiomyocytes were dissociated and selected by the expression of green fluorescent protein under the transcriptional control of myosin light chain-2v. Cardiomyocytes were exposed to varying glucose concentrations (5, 11, and 25 mM). Lactate dehydrogenase (LDH) release was measured using a colorimetric cytotoxicity assay kit and read spectrophotometrically. Mitochondrial membrane potential and reactive oxygen species (ROS) generation were measured with confocal microscopy. APC reduced oxidative stress-induced lactate dehydrogenase (LDH) release in cardiomyocytes derived from both N-iPSCs- and T2DM-iPSCs in 5 and 11 mM glucose concentrations, but not in 25 mM glucose. Baseline membrane potential was similar between non-diabetic- and Type 2 diabetic-derived cardiomyocytes; however 25 mM glucose hyperpolarized the mitochondrial membrane potential. T2DM-iPSC-derived cardiomyocytes had an increase in ROS baseline levels compared to N-iPSC-derived cardiomyocytes. Additionally, high glucose concentrations increased oxidative stress-induced ROS production compared to lower glucose conditions in both cell lines. Our preliminary data shows that high glucose generates excessive ROS and hyperpolarizes the mitochondrial membrane and may contribute to the inefficiency of diabetic and/or hyperglycemic individuals to be anesthetically preconditioned. By utilizing human iPSC-derived cardiomyocytes we can begin to understand the inability of hyperglycemic and diabetic individuals to be anesthetically preconditioned.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Manman Gu ◽  
Jing Xu ◽  
Chunyang Han ◽  
Youxi Kang ◽  
Tengfei Liu ◽  
...  

Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines (TCM), exhibits a strong antimicrobial activity in the treatment of diarrhea. However, it causes human as well as animal toxicity from heavy dosage. The present study was conducted to investigate the cytotoxicity of berberine and its possible trigger mechanisms resulting in cell cycle arrest, DNA damage, ROS (reactive oxygen species) level, mitochondrial membrane potential change, and cell apoptosis in L929 murine fibroblast (L929) cells. The cells were culturedin vitroand treated with different concentrations of berberine for 24 h. The results showed that cell viability was significantly decreased in a subjected dose-dependent state; berberine concentrations were higher than 0.05 mg/mL. Berberine at a concentration above 0.1 mg/mL altered the morphology of L929 cells. Cells at G2/M phase were clear that the level of ROS and cell apoptosis rates increased in 0.1 mg/mL group. Each DNA damage indicator score (DIS) increased in groups where concentration of berberine was above 0.025 mg/mL. The mitochondrial membrane potential counteractive balance mechanics were significantly altered when concentrations of berberine were above 0.005 mg/mL. In all, the present study suggested that berberine at high dosage exhibited cytotoxicity on L929 which was related to resultant: cell cycle arrest; DNA damage; accumulation of intracellular ROS; reduction of mitochondrial membrane potential; and cell apoptosis.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Tianyan Jiang ◽  
Haoxiang Guo ◽  
Ya-Nan Xia ◽  
Yun Liu ◽  
Dandan Chen ◽  
...  

Aim: To explore the hepatotoxicity of copper sulfide nanoparticles (CuSNPs) toward hepatocyte spheroids. Materials & methods: Other than the traditional agarose method to generate hepatocyte spheroids, we developed a multi-concave agarose chip (MCAC) method to investigate changes in hepatocyte viability, morphology, mitochondrial membrane potential, reactive oxygen species and hepatobiliary transporter by CuSNPs. Results: The MCAC method allowed a large number of spheroids to be obtained per sample. CuSNPs showed hepatotoxicity in vitro through a decrease in spheroid viability, albumin/urea production and glycogen deposition. CuSNPs also introduced hepatocyte spheroid injury through alteration of mitochondrial membrane potential and reactive oxygen species, that could be reversed by N-acetyl-l-cysteine. CuSNPs significantly decreased the activity of BSEP transporter by downregulating its mRNA and protein levels. Activity of the MRP2 transporter remained unchanged. Conclusion: We observed the hepatotoxicity of CuSNPs in vitro with associated mechanisms in an advanced 3D culture system.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 564 ◽  
Author(s):  
Jui-Chih Chang ◽  
Chih-Feng Lien ◽  
Wen-Sen Lee ◽  
Huai-Ren Chang ◽  
Yu-Cheng Hsu ◽  
...  

It has been documented that reactive oxygen species (ROS) contribute to oxidative stress, leading to diseases such as ischemic heart disease. Recently, increasing evidence has indicated that short-term intermittent hypoxia (IH), similar to ischemia preconditioning, could yield cardioprotection. However, the underlying mechanism for the IH-induced cardioprotective effect remains unclear. The aim of this study was to determine whether IH exposure can enhance antioxidant capacity, which contributes to cardioprotection against oxidative stress and ischemia/reperfusion (I/R) injury in cardiomyocytes. Primary rat neonatal cardiomyocytes were cultured in IH condition with an oscillating O2 concentration between 20% and 5% every 30 min. An MTT assay was conducted to examine the cell viability. Annexin V-FITC and SYTOX green fluorescent intensity and caspase 3 activity were detected to analyze the cell death. Fluorescent images for DCFDA, Fura-2, Rhod-2, and TMRM were acquired to analyze the ROS, cytosol Ca2+, mitochondrial Ca2+, and mitochondrial membrane potential, respectively. RT-PCR, immunocytofluorescence staining, and antioxidant activity assay were conducted to detect the expression of antioxidant enzymes. Our results show that IH induced slight increases of O2−· and protected cardiomyocytes against H2O2- and I/R-induced cell death. Moreover, H2O2-induced Ca2+ imbalance and mitochondrial membrane depolarization were attenuated by IH, which also reduced the I/R-induced Ca2+ overload. Furthermore, treatment with IH increased the expression of Cu/Zn SOD and Mn SOD, the total antioxidant capacity, and the activity of catalase. Blockade of the IH-increased ROS production abolished the protective effects of IH on the Ca2+ homeostasis and antioxidant defense capacity. Taken together, our findings suggest that IH protected the cardiomyocytes against H2O2- and I/R-induced oxidative stress and cell death through maintaining Ca2+ homeostasis as well as the mitochondrial membrane potential, and upregulation of antioxidant enzymes.


2021 ◽  
pp. 096032712110361
Author(s):  
Marzieh Farahani-Zangaraki ◽  
Azade Taheri ◽  
Mahmoud Etebari

Introduction: Hyperinsulinemia occurs in type 2 diabetic patients with insulin resistance. This increase in insulin levels in the blood increases reactive oxygen species production and oxidative stress, resulting in DNA damage. Carvedilol (CRV) is a non-selective beta-blocker, and research has shown that this compound and its metabolites have anti-oxidative properties. Carvedilol can, directly and indirectly, reduce reactive oxygen species (ROS) and has a protective effect on DNA damage from oxidative stress. Given the insolubility of CRV in water, finding new methods to increase its solubility can be an essential step in research. This study aimed to determine whether carvedilol could have a protective effect on insulin-induced genomic damage. Methods: We treated cells with insulin alone, amorphous-CRV alone, and amorphous-CRV and niosomal-CRV with insulin and DNA damage were investigated using the comet method to achieve this goal. Results: Our results showed that insulin in the studied concentration has a significant genotoxic effect and non-cytotoxic at higher concentrations. CRV, both in amorphous and niosome form, reduced insulin-induced DNA damage by reducing ROS production. The comet assay results demonstrate that treating HUVEC cells in pretreatment condition with amorphous-CRV and niosome-CRV significantly reduces DNA damage of insulin.


Author(s):  
Eriko Sugano ◽  
Yuka Endo ◽  
Akihisa Sugai ◽  
Yuki Kikuchi ◽  
Kitako Tabata ◽  
...  

Geranylgeranyl acetone (GGA) protects against various types of cell damages by upregulating heat shock proteins. We investigated whether GGA protect neuronal cells from cell death induced by oxidative stress. Glutamate exposure was lethal to HT-22 cells which comprise a neuronal line derived from mouse hippocampus. This configuration is often used as a model for hippocampus neurodegeneration in vitro. In the present study, GGA protected HT-22 cells from glutamate-induced oxidative stress. GGA pretreatment did not induce Hsps. Moreover, reactive oxygen species increased to the same extent in both GGA-pretreated and untreated cells exposed to glutamate. In contrast, glutamate exposure and GGA pretreatment increased mitochondrial membrane potential. However, increases in intracellular Ca2+ concentration were inhibited by GGA pretreatment. In addition, the increase of phosphorylated ERKs by the glutamate exposure was inhibited by GGA pretreatment. These findings suggest that GGA protects HT-22 cells from glutamate-provoked cell death without Hsp induction and that the mitochondrial calcium buffering capacity plays an important role in this protective effect.


Sign in / Sign up

Export Citation Format

Share Document