Soil phosphorus tests and grain yield responsiveness of maize (Zea mays) on Ferrosols

Soil Research ◽  
1997 ◽  
Vol 35 (3) ◽  
pp. 609 ◽  
Author(s):  
P. W. Moody ◽  
T. Dickson ◽  
R. L. Aitken

The grain yield response of maize (Zea mays) to various rates of applied phosphorus (P) was measured at each of 17 sites in the South Burnett region of south-eastern Queensland. The soils at all sites were Ferrosols. Relative grain yield of the nil applied P treatment [100 × (yield at nil applied P/maximum yield)] was related to Colwell (0·5 M NaHCO3) extractable P (PB), CaCl2-extractable P, and equilibrium P concentration and P buffer capacity calculated from P sorption curves. Of these P measurements, PB was most highly correlated with relative grain yield (R2 = 0·94 for a linear response and plateau fit, R2 = 0·92 for a Mitscherlich fit), and the PB values at 90% maximum grain yield were 20 mg/kg for the linear response and plateau model and 32 mg/kg for the Mitscherlich equation.


1983 ◽  
Vol 23 (120) ◽  
pp. 38 ◽  
Author(s):  
PW Moody ◽  
GF Haydon ◽  
T Dickson

Grain yield response of soybean (Glycine max cv. Bragg) to applied phosphorus was measured at 19 experimental sites in the South Burnett region. The soil phosphorus supply factors of quantity, intensity, buffer capacity and rate were estimated by various soil chemical tests, and relative yield [(yield at nil applied phosphorus/maximum yield) x 100] regressed against these tests. The equilibrium phosphorus concentration-the intensity measure-accounted for the greatest percentage variation in relative yield (80%) and at 90% maximum yield was 0.014 �g P/ml. Phosphorus extracted by 0.01 M CaCl2 was highly correlated with the equilibrium phosphorus concentration (r2=0.93) and accounted for 73% of the variation in relative yield. Soil levels of calcium chloride-extractable phosphorus were interpreted as follows: < 0.044 �g P/g, response to phosphorus probable; 0.044 �g P/g to 0.058 �g P/g, response uncertain; > 0.058 �g P/g, response unlikely



Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 503 ◽  
Author(s):  
MDA Bolland ◽  
IR Wilson ◽  
DG Allen

Twenty-three virgin Western Australian soils of different buffer capacities (BC) for phosphorus (P) were collected. The effects of BC on the relationships between Colwell soil test P and the level of P applied, yield and soil test P, and yield and the level of P applied were studied. Wheat (Triticum aestivum cv. Reeves), grown for 27 days in a glasshouse, was used. Two methods of measuring P sorption of soils, P buffer capacity (PBC) and P retention index (PRI), were used. The PBC is determined from a multi-point sorption curve. The PRI is a new, diagnostic, one-point, sorption method now widely used for commercial soil P testing in Western Australia. Both PBC and PRI produced similar results. The relationship between soil test P and the level of P applied was adequately described by a linear equation. When the slope coefficient of the linear equations was related to PBC or PRI, there was no relationship. The other two relationships were adequately described by a Mitscherlich equation. When the curvature coefficient of the Mitscherlich equation was related to PBC or PRI, the trend was for the value of the coefficient to decrease with increasing PBC or PRI. Consequently, as the capacity of the soil to sorb P increased the trend was for larger soil test P or higher levels of P application to produce the same yield.



Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1735-1743 ◽  
Author(s):  
Yuba R. Kandel ◽  
Kiersten A. Wise ◽  
Carl A. Bradley ◽  
Albert U. Tenuta ◽  
Daren S. Mueller

A 2-year study was conducted in Illinois, Indiana, Iowa, and Ontario in 2013 and 2014 to determine the effects of planting date, seed treatment, and cultivar on plant population, sudden death syndrome (SDS) caused by Fusarium virguliforme, and grain yield of soybean (Glycine max). Soybean crops were planted from late April to mid-June at approximately 15-day intervals, for a total of three to four plantings per experiment. For each planting date, two cultivars differing in SDS susceptibility were planted with and without fluopyram seed treatment. Mid-May plantings resulted in higher disease index compared with other planting dates in two experiments, early June plantings in three, and the remaining six experiments were not affected by planting date. Soil temperature at planting was not linked to SDS development. Root rot was greater in May plantings for most experiments. Resistant cultivars had significantly lower disease index than the susceptible cultivar in 54.5% of the experiments. Fluopyram reduced disease severity and protected against yield reductions caused by SDS in nearly all plantings and cultivars, with a maximum yield response of 1,142 kg/ha. Plant population was reduced by fluopyram seed treatment and early plantings in some experiments; however, grain yield was not affected by these reductions. Yields of plots planted in mid-June were up to 29.8% less than yields of plots planted in early May. The lack of correlation between early planting date and SDS severity observed in this study indicates that farmers do not have to delay planting in the Midwest to prevent yield loss due to SDS; cultivar selection combined with fluopyram seed treatment can reduce SDS in early-planted soybean (late April to mid May).



Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 55 ◽  
Author(s):  
P. W. Moody

Soil phosphorus (P) buffer capacity is the change in the quantity of sorbed P required per unit change in solution P concentration. Because P availability to crops is mainly determined by solution P concentration, as P buffer capacity increases, so does the quantity of P required to maintain a solution P concentration that is adequate for crop demand. Bicarbonate-extractable P using the Colwell method is the most common soil P test used in Australia, and Colwell-P can be considered to estimate P quantity. Therefore, as P buffer capacity increases, the Colwell-P concentration required for maximum yield also increases. Data from several published and unpublished studies are used to derive relationships between the ‘critical’ Colwell-P value (Colwell-P at 90% maximum yield) and the single-point P buffer index (PBI) for annual medics, soybean, potato, wheat, and temperate pasture. The rate of increase in critical Colwell-P with increasing PBI increases in the order: temperate pasture < medics < wheat < potato. Indicative critical Colwell-P values are given for the 5 crops at each of the PBI categories used to describe soil P buffer capacity as it increases from extremely low to very high.



1991 ◽  
Vol 71 (4) ◽  
pp. 1021-1027 ◽  
Author(s):  
M. Tollenaar ◽  
M. Mihajlovic

Genetic grain yield improvement of maize (Zea mays L.) in Ontario during the past three decades can be attributed, in part, to increased tolerance to environmental stresses. We have observed a differential response of field-grown old and new hybrids after application of the photosystem II inhibiting herbicide bromoxynil (4-hydroxy-3,5-dibromobenzonitrile). Studies were conducted to test whether tolerance to bromoxynil is associated with stress tolerance and grain yield in maize hybrids representing three decades of yield improvement in Ontario. Experiments were carried out with seedlings of eight maize hybrids grown in pots in controlled-environment growth cabinets and, in one experiment, with seedlings grown in pots outside during the months of July and August at Guelph, Ontario. Bromoxynil was applied to the youngest fully-expanded leaf of plants at the 6- to 8-leaf stage and chlorophyll fluorescence of the treated leaves was measured in the 2- to 24-h period after bomoxynil application. Results showed that the chlorophyll fluorescence ratio Fv/Fm, an indicator of photosynthetic efficiency, declined after bromoxynil application until 4 h after application and, subsequently, recovered slightly during the next 20 h. Large differences in the Fv/Fm ratio were apparent among hybrids in the response to bromoxynil. The Fv/Fm ratio was significantly higher for hybrids released in the 1980s than for hybrids released in the 1970s, and the Fv/Fm ratio of the latter group was significantly higher than that of the four oldest hybrids. Chlorophyll fluorescence ratios Fv/Fm after bromoxynil application in the seedling phase were highly correlated with grain yield of the hybrids in field experiments conducted during 1987 and 1988 (r = 0.91). Results of this study support the contention that maize genotypes that are less sensitive to bromoxynil are less susceptible to environmental stresses. Key words: Zea mays L., stress tolerance, bromoxynil, chlorophyll fluorescence, Fv/Fm ratio, detoxifying agents



1988 ◽  
Vol 6 (4) ◽  
pp. 352-353 ◽  
Author(s):  
M. V. Martinez-Toledo ◽  
J. Gonzalez-Lopez ◽  
T. de la Rubia ◽  
J. Moreno ◽  
A. Ramos-Cormenzana


2015 ◽  
Vol 66 (1) ◽  
pp. 23 ◽  
Author(s):  
Craig Scanlan ◽  
Ross Brennan ◽  
Gavin A. Sarre

Changes in soil fertility following long periods of crop production in the south-west of Western Australia (WA) may have implications for phosphorus (P) fertiliser recommendations for wheat production. When the sandy soils of the region were first cleared for agricultural production, they were typically marginally acidic to neutral, with soil extractable-P levels inadequate for crop production. Recent surveys have shown that 87% of soils in south-west WA exceed the critical soil extractable-P level required for 90% of maximum grain yield, and ~70% of soils have a surface-soil pHCa <5.5. There has also been a shift towards a high frequency of wheat in the crop sequence. We conducted a field experiment to begin to quantify the importance of the interactions between soil pH and crop sequence on wheat response to P fertiliser. For grain yield, the magnitude of the response was greatest for rate of P applied, followed by lime treatment and then crop sequence. There were no interactions between these treatments. Our analysis of the grain-yield response to rates of P fertiliser showed no significant difference between the shape of the grain-yield response curve for treatments with and without lime. However, we did find a significant interaction between lime treatment and rate of P fertiliser applied for shoot P concentration and that soil P was more plant-available in the +lime than the –lime treatment. There is justification for making realistic adjustments to yield potential based on soil pH or crop sequence, although further work is required to determine whether the shape of the grain-yield response curve varies with these two factors.



2016 ◽  
Vol 34 (4) ◽  
pp. 729-736 ◽  
Author(s):  
I.A. KHAN ◽  
G. HASSAN ◽  
N. MALIK ◽  
R. KHAN ◽  
H. KHAN ◽  
...  

ABSTRACT Maize crop (Zea mays) is facing lots of problems from different pests throughout Asia, including Pakistan. Weed infestation is one of the serious pests that remarkably decrease the grain yield in maize. In Khyber Pakhtunkhwa province of Pakistan, the trend of maize hybrid cultivation is gaining the attention of the farmers due to its higher production. Therefore, in this research we tested herbicides (Stomp 330 E, Dual gold 960 EC, 2,4-D, ester) in maize hybrids (P-3025, P-32T78, P-3203). The experiment was done in RCB design with split plots arrangement, where maize hybrids were kept in main plots, while herbicides were assigned to the subplots. Each treatment was repeated three times at the New Developmental Farm (NDF), at the Peshawar University of Agriculture, Pakistan. Results revealed that both hybrids and herbicides significantly increased plant height, biological yield and grain yield. However, the lowest weed density (142.50 m-2) was observed in Dual Gold 960 EC treated plots. Similarly, plant height (247.188 cm) and grain yield (2.253 ton ha-1) was maximum in maize hybrid P-3025 and Dual gold treated plots. From the instant experiment, it is concluded that the Dual gold 960 EC herbicide is declared as the best herbicide for weed suppression in maize, while maize hybrid P-3025 was the best hybrid giving maximum yield in the study.



1989 ◽  
Vol 29 (3) ◽  
pp. 419 ◽  
Author(s):  
NA Maier ◽  
KA Potocky-Pacay ◽  
JM Jacka ◽  
CMJ Williams

Field experiments were conducted over 6 years at 33 sites throughout the main potato growing areas of South Australia to examine the effects of applied phosphorus (banded at planting), at rates up to 300 kg/ha, on the total yield and size distribution of tubers and to calibrate, in terms of total yield, 8 soil phosphorus extraction procedures (Colwell, Olsen, Bray 1, Bray 2, Mehlich no. 1, lactate, fluoride and total). Phosphorus application significantly (P< 0.05) increased total tuber yield at 16 sites. The mean relative yield for these responsive sites was 69.7% (range 37.4- 91.2%) compared with 97.5% (range 88.0-102.5%) for the non-responsive sites. Tuber size distributions were determined at 13 sites and, depending on site and cultivar, the yield of 80-450 g tubers for the highest yielding treatments represented from 64.2 to 93.7% of the total yield of tubers for those treatments. For each soil phosphorus extraction procedure the Mitscherlich and Smith-Dolby bent-hyperbola models and the Cate-Nelson separation were used to investigate the correlations between yield response and extractable and total phosphorus in the surface (0- 15 cm) soil samples and to calculate critical values. For loamy sand to sandy clay loam surface soils, the order of efficacy of soil tests based on the coefficients of determination (r2) calculated using the Mitscherlich and Smith-Dolby bent-hyperbola models was Bray 1 and Bray 2 > Olsen > lactate, Mehlich no. 1, fluoride and Colwell. The coefficients of determination ranged from 0.88 (Bray 1) to 0.64 (Colwell) for the Smith-Dolby bent-hyperbola model and from 0.86 (Bray 1) to 0.65 (fluoride) for the Mitscherlich model. Yield response was not correlated with total phosphorus concentration. Using the Smith-Dolby benthyperbola model the critical phosphorus values (s.e. in parentheses) were: 25.8(1.8), 40.9(2.6), l6.8(1.4), 13.9(1.0), 38.4(3.1), 24.2(2.9) and 35.1(3.0) mg/kg for the Bray 1, Bray 2, Olsen, lactate, fluoride, Mehlich no. 1 and Colwell methods, respectively. Yield deficits >20% were associated with phosphorus soil test values t 2 0 mg/kg (Bray 1 method) and P-sorption values >240 mg/kg. Rates of 48-73 kg P/ha banded at planting were required for 95% of maximum yield at the deficient sites. For acid coarse-grain sand surface soils, significant Cate-Nelson separations were obtained for the Colwell, Bray 1, Bray 2, Mehlich no. 1 and fluoride methods, the critical phosphorus values were 7.5, 7.0, 5.5, 6.5 and 8.0 mg/kg, respectively. The order of efficacy of the soil tests was Bray 2 (r2 = 0.66) >Bray 1, Colwell, Mehlich no. 1 and fluoride (all r2 = 0.55). Yield deficits >10% were associated with soil test values t 6 mg/kg (Bray 1 method). Rates of 27-59 kg P/ha banded at planting were required for 95% of maximum yield at the deficient sites. Data are presented which suggest that for similar soil types and extraction procedures critical values or critical concentration ranges may apply across a range of growing conditions, planting times and cultivars.



Sign in / Sign up

Export Citation Format

Share Document