Intra- and interspecific allozyme variation in eucalypts from the spotted gum group, Corymbia, section 'Politaria' (Myrtaceae)

2000 ◽  
Vol 13 (4) ◽  
pp. 491 ◽  
Author(s):  
M. W. McDonald ◽  
P. A. Butcher ◽  
J. C. Bell ◽  
J. S. Larmour

The distribution of genetic variation within and among species inCorymbia section‘Politaria’ was examined using allozymes.This section consists of four species,Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson, C. maculata (Hook.) K.D.Hill & L.A.S.Johnson, C. henryi (Blake) K.D.Hill & L.A.S.Johnson and C. variegata (F.Muell.) K.D.Hill & L.A.S.Johnson, which are of commercial interest for plantation and farmforestry. Thirty populations representing the species’ range-widedistributions were studied, extending from upland tropical regions of northQueensland, south to eastern Victoria. Despite relatively low allozymedivergence between species, there was a relationship between geographicdistribution patterns of populations and allozyme variation. The section wasshown to comprise very closely related species with only 15% of thetotal genetic diversity attributed to differences between species. Twodistinct genetic alliances were evident:C. maculata–C. henryi andC. citriodora–C. variegata.Corymbia citriodora andC. variegata, however, could not be distinguished bytheir allozyme profiles. The lack of genetic differentiation between thesetaxa suggests that they represent one species composed of two chemical races.Corymbia maculata and C. henryiwere shown to be closely allied but genetically distinct.Corymbia henryi had the highest genetic diversity in thegroup and lowest differentiation among populations, whileC. maculata had the lowest diversity but the highestgenetic differentiation among populations. There was evidence ofisolation-by-distance among populations ofC. citriodora, C. maculata andC. variegata but not in C. henryi,which has a smaller geographic range. The inclusion in the study ofC. torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson asan outgroup accentuated the small genetic differences between species in thegroup. The patterns of genetic diversity are discussed in relation to thespecies’ taxonomic relationships, breeding systems and utilisation.

2003 ◽  
Vol 16 (5) ◽  
pp. 643 ◽  
Author(s):  
M. W. McDonald ◽  
P. A. Butcher ◽  
J. S. Larmour ◽  
J. C. Bell

The distribution of genetic variation within and among species inCorymbia section‘Politaria’ was examined using allozymes.This section consists of four species,Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson, C. maculata (Hook.) K.D.Hill & L.A.S.Johnson, C. henryi (Blake) K.D.Hill & L.A.S.Johnson and C. variegata (F.Muell.) K.D.Hill & L.A.S.Johnson, which are of commercial interest for plantation and farmforestry. Thirty populations representing the species’ range-widedistributions were studied, extending from upland tropical regions of northQueensland, south to eastern Victoria. Despite relatively low allozymedivergence between species, there was a relationship between geographicdistribution patterns of populations and allozyme variation. The section wasshown to comprise very closely related species with only 15% of thetotal genetic diversity attributed to differences between species. Twodistinct genetic alliances were evident:C. maculata–C. henryi andC. citriodora–C. variegata.Corymbia citriodora andC. variegata, however, could not be distinguished bytheir allozyme profiles. The lack of genetic differentiation between thesetaxa suggests that they represent one species composed of two chemical races.Corymbia maculata and C. henryiwere shown to be closely allied but genetically distinct.Corymbia henryi had the highest genetic diversity in thegroup and lowest differentiation among populations, whileC. maculata had the lowest diversity but the highestgenetic differentiation among populations. There was evidence ofisolation-by-distance among populations ofC. citriodora, C. maculata andC. variegata but not in C. henryi,which has a smaller geographic range. The inclusion in the study ofC. torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson asan outgroup accentuated the small genetic differences between species in thegroup. The patterns of genetic diversity are discussed in relation to thespecies’ taxonomic relationships, breeding systems and utilisation.


2003 ◽  
Vol 75 (1) ◽  
pp. 39-54 ◽  
Author(s):  
W. RONALD HEYER ◽  
YANA R. REID

The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.


1995 ◽  
Vol 16 (4) ◽  
pp. 331-340 ◽  
Author(s):  
Ross D. MacCulloch ◽  
F.D. Danielyan ◽  
Ilya S. Darevsky ◽  
Robert W. Murphy ◽  

AbstractGenetic diversity at 37 allozyme loci was surveyed from Lacerta valentini (4 populations), L. portschinskii and L. rudis (1 population each). The number of polymorphic loci ranged from 1 (L. valentini) to 11 (L. rudis). Mean heterozygosity (direct count) ranged from 0.003 (L. valentini) to 0.071 (L. rudis). Nei's (1978) genetic distance ranged from 0-0.03 among populations of L. valentini, 0.127-0.163 between L. valentini and L. rudis and 0.366-0.487 between L. portschinskii and the two other taxa. Indices of genetic variability for species having disjunct distributions were lower than in species with contiguous distributions, similar to the case of insular populations, which have lower values than do mainland populations.


Genetika ◽  
2016 ◽  
Vol 48 (3) ◽  
pp. 963-970
Author(s):  
A.K. Singh ◽  
Sanjay Kumar ◽  
Neha Singh

A considerable amount of allozyme variation exists among different populations of a Drosophila species. Such allozyme variation can also be observed between two closely related species of Drosophila which show reproductive isolation but experience mating under laboratory conditions and produce hybrids. D. bipectinata and D. malerkotliana are two closely related sympatric species and belong to bipectinata species complex. Allozyme polymorphism studies conducted with them and their hybrids reveal that these two species have enough genetic differentiation due to allozyme variation at three enzyme coding loci; however, their hybrids exhibit common allozyme variants of both the species. The hybrids exhibit very little genetic differentiation from either of their parents.


2015 ◽  
Vol 43 (2) ◽  
pp. 582-588 ◽  
Author(s):  
Iacob CRĂCIUNESC ◽  
Barbara VORNAM ◽  
Ludger LEINEMANN ◽  
Reiner FINKELDEY ◽  
Neculae ȘOFLETEA ◽  
...  

Dehydryn genes are involved in plant response to environmental stress and may be useful to examine functional diversity in relation to adaptive variation. Recently, a dehydrin gene (DHN3) was isolated in Quercus petraea and showed little differentiation between populations of the same species in an altitudinal transect. In the present study, inter- and intraspecific differentiation patterns in closely related and interfertile oaks were investigated for the first time at the DHN3 locus. A four-oak-species stand (Quercus frainetto Ten., Q. petraea (Matt.) Liebl., Q. pubescens Willd., Q. robur L.) and two populations for each of five white oak species (Q. frainetto Ten., Q. petraea (Matt.) Liebl., Q. pubescens Willd., Q. robur L. and Q. pedunculiflora K. Koch) were analyzed. Three alleles shared by all five oak species were observed. However, only two alleles were present in each population, but with different frequencies according to the species. At population level, all interspecific pairs of populations showed significant differentiation, except for pure Q. robur and Q. pedunculiflora populations. In contrast, no significant differentiation (p > 0.05) was found among conspecific populations. The DHN3 locus proved to be very useful to differentiate Q. frainetto and Q. pubescens from Q. pedunculiflora (FST = 0.914 and 0.660, respectively) and Q. robur (FST = 0.858 and 0.633, respectively). As expected, the lowest level of differentiation was detected between the most closely related species, Q. robur and Q. pedunculiflora (FST = 0.020). Our results suggest that DHN3 can be an important genetic marker for differentiating among European white oak species.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


1996 ◽  
Vol 26 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Naoki Tani ◽  
Nobuhiro Tomaru ◽  
Masayuki Araki ◽  
Kihachiro Ohba

Japanese stone pine (Pinuspumila Regel) is a dominant species characteristic of alpine zones of high mountains. Eighteen natural populations of P. pumila were studied in an effort to determine the extent and distribution of genetic diversity. The extent of genetic diversity within this species was high (HT = 0.271), and the genetic differentiation among populations was also high (GST = 0.170) compared with those of other conifers. In previous studies of P. pumila in Russia, the genetic variation within the species was also high, but the genetic differentiation among populations was low. We infer that this difference originates from differences in geographic distribution and ecological differences between the two countries. The genetic variation within each population tended, as a whole, to be smaller within marginal southern populations than within northern populations. Genetic relationships among populations reflect the geographic locations, as shown by unweighted pair-group method with arithmetic means and neighbor-joining phylogenetic trees.


2004 ◽  
Vol 94 (3) ◽  
pp. 219-227 ◽  
Author(s):  
C. Gaete-Eastman ◽  
C.C. Figueroa ◽  
R. Olivares-Donoso ◽  
H.M. Niemeyer ◽  
C.C. Ramírez

AbstractHerbivorous insect species with narrow diet breadth are expected to be more prone to genetic differentiation than insect species with a wider diet breadth. However, a generalist can behave as a local specialist if a single host-plant species is locally available, while a specialist can eventually behave as a generalist if its preferred host is not available. These problems can be addressed by comparing closely related species differing in diet breadth with overlapping distributions of insect and host populations. In this work, diet breadth, genetic diversity and population differentiation of congeneric aphid species from southern beech forests in Chile were compared. While at the species level no major differences in genetic diversity were found, a general trend towards higher genetic diversity as diet breadth increased was apparent. The aphid species with wider diet breadth, Neuquenaphis edwardsi (Laing), showed the highest genetic diversity, while the specialist Neuquenaphis staryi Quednau & Remaudière showed the lowest. These differences were less distinct when the comparisons were made in the same locality and over the same host. Comparison of allopatric populations indicates that genetic differentiation was higher for the specialists, Neuquenaphis similis Hille Ris Lambers and N. staryi, than for the generalist N. edwardsi. Over the same host at different locations, genetic differentiation among populations of N. edwardsi was higher than among populations of N. similis. The results support the assumption that specialists should show more pronounced genetic structuring than generalists, although the geographical distribution of host plants may be playing an important role.


Sign in / Sign up

Export Citation Format

Share Document