scholarly journals Evaluation of nutrient uptake of selected cover crops and biochar on the yield advantage of two taro (Colocasia esculenta) cultivars in Samoa

2018 ◽  
Vol 36 (1) ◽  
pp. 9
Author(s):  
Sanjay Anand

A study was conducted in three agro ecological zones of Samoa to compare the dry matter yields and nutrient uptake of selected tropical cover crops and biochar application on different Samoan inceptisols. Subsequent improvements in corm yield of the two taro cultivars, (Samoa 1 and Samoa 2), under these fallow systems were also determined. The split-plot arrangement with main plots as cover crops and subplots as the cultivars was used, with four replications. The evaluated cover crops included: a reference – grass fallow treatment (farmers practice), Mucuna pruriens, Erythrina subumbrans, Mucuna pruriens + 200 kg of NPK fertiliser (12-5-20), farmer’s reference practice + 400 kg of NPK fertiliser (12-5-20), and biochar produced from coconut shells. The biomass samples were collected after the six month of fallow duration. Plant tissue analyses revealed that the nitrogen and the phosphorus contents of erythrina was higher than corresponding mucuna cover across all three sites. However, as a result of higher biomass production, Mucuna pruriens showed the highest nutrient accrual over the six month fallow duration. The general yield trend under different fallow practices across all the sites indicates that mucuna with modest supplementation of complete fertilisers can help maintain optimum taro yields. However, it appears that the yield responses of the taro crop to fallow treatments are site-specific.

2019 ◽  
Author(s):  
Bello M. Shehu ◽  
Bassam A. Lawan ◽  
Jibrin M. Jibrin ◽  
Alpha Y. Kamara ◽  
Ibrahim B. Mohammed ◽  
...  

AbstractEstablishing balanced nutrient requirements for maize (Zea mays L.) in the Northern Nigerian Savanna is paramount to develop site-specific fertilizer recommendations to increase maize yield, profits of farmers and avoid negative environmental impacts of fertilizer use. The model QUEFTS (QUantitative Evaluation of Fertility of Tropical Soils) was used to estimate balanced nitrogen (N), phosphorus (P) and potassium (K) requirements for maize production in the Northern Nigerian Savanna. Data from on-farm nutrient omission trials conducted in 2015 and 2016 rainy seasons in two agro-ecological zones in the Northern Nigerian Savanna (i.e. Northern Guinea Savanna “NGS” and Sudan Savanna “SS”) were used to parameterize and validate the QUEFTS model. The relations between indigenous soil N, P, and K supply and soil properties were not well described with the QUEFTS default equations and consequently new and better fitting equations were derived. The average fertilizer recovery fractions of N, P and K in the NGS were generally comparable with the QUEFTS default values, but lower recovery fractions of these nutrients were observed in the SS. The parameters of maximum accumulation (a) and dilution (d) in kg grain per kg nutrient for the QUEFTS model obtained were respectively 35 and 79 for N, 200 and 527 for P and 25 and 117 for K in the NGS zone and 32 and 79 for N, 164 and 528 for P and 24 and 136 for K in the SS zone. The model predicted a linear relationship between grain yield and above-ground nutrient uptake until yield reached about 50 to 60% of the yield potential. When the yield target reached 60% of the potential yield (i.e. 6.0 tonnes per hectare), the model showed above-ground nutrient uptake of 19.4, 3.3 and 23.0 kg N, P, and K, respectively, per one tonne of maize grain in the NGS, and 17.3, 5.3 and 26.2 kg N, P and K, respectively, per one tonne of maize grain in the SS. These results suggest an average NPK ratio in the plant dry matter of about 5.9:1:7.0 for maize in the NGS and 3.3:1:4.9 for maize in the SS. There was a close agreement between observed and parameterized QUEFTS predicted yields across the two agro-ecological zones (R2 = 0.70 for the NGS and 0.86 for the SS). We concluded that the QUEFTS model can be used for balanced nutrient requirement estimations and development of site-specific fertilizer recommendations for maize intensification in the Northern Nigerian Savanna.


2018 ◽  
Vol 17 ◽  
pp. 24-29
Author(s):  
Banshi Sharma

Nepal is divided in five agro-ecological zones. There is feed deficit in every zones except in high mountain regions. There is 34% deficit in animal feed (Singh, 2002). The forage mission* is carried out in 49 districts of the country with the aim of providing sufficient green and dry matter to improved livestock of the country to yield more milk from cattle and buffalo. Similarly more meat from buffaloes, sheep and goats has been obtained. Pasture land improvement is in high mountain areas. In mid hills, cultivation of forages such as stylo, molasses, mulato, setaria, joint vetch, leucaena, napier , forage peanut, desmodium and climbing legumes such as fodder peas have been promoted. In Terai, intensive cultivation of fodder crops: basically winter forages- oat, berseem and vetch is going to be popular. Feeding the legumes and non-legumes forage plant in suitable ratio helps a great extend in livestock production.


Response of Potassium (K) is boosted due to the introduction of high-yielding varieties and cropping intensity. So, a pot experiment was done to see the allocation of native and added K in soils and the response of this on rice. Seven soil samples from seven AEZs. An amount of 1-kilogram soil was taken in each of 28 earthen pots of which 14 pots for cultivation rice and 14 pots for without cultivation as a control. Potassium and other fertilizers applied as follows Fertilizer Recommendation Guide-1012. Two replicate plots were used per treatment. Then the soils were saturated with water so that the soils could be soaked well. The pots were kept in this condition for one day to allow the soils to settle in the pots properly. The rice variety used for the experiment was BRRI dhan28. All forms of K were found to remarkable decrease due to cultivation. The depleted non-exchangeable K sum was the largest, this was followed by exchangeable and then, in control plots, water-soluble K. The depleted amount of exchangeable and non-exchangeable K was almost similar but higher than water-soluble K in treated pots. A significant variation was found among the yields ranging from 3.77 to 5.48 g pot-1. The average dry matter yield of treated pots 4.75 g pot-1 was significantly higher than non-treated pots 3.10 g pot-1.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Ruslan A. Gopar ◽  
S. Martono ◽  
Muhamad N. Rofiq ◽  
Windu N.

The objective of this experiment was to obtain forage/ cover crops productivity and carrying capacity for ruminant animals in Pelalawan Regency, Riau in the dry season. Data were collected from civil palm oil plantations at the aged 7, 10 and 14 years in the end of dry season with a destructive sampling method. Sampling used line intercept method which every hectare were picked 10 points by using a pair of 1 m2 sized quadrant. The result showed that the number of vegetations/ cover crops in oil palm plantations aged 7, 10 and 14 years was 42 types.The proportion of forage which consist grass, legume and ferns was diverse at each age of oil palm plantations. Forage production under oil palm plantations aged 7, 10 and 14 years were 2,571 kg/ha, 1479.76 kg/ha and 1417.22 kg/ha as fed and amounted to 811.41 kg/ ha, 471, 15 kg/ ha and 456.91 kg/ ha in the dry matter production. Average carrying capacities of oil palm plantations aged 7, 10 and 14 years was 0.36 Animal units (AU)/ha/year, 0.21 AU/ha/year and 0.20 AU/ ha/year.Penelitian ini bertujuan untuk mengetahui potensi jumlah covercrop dan kapasitas tampungnya di kebun sawit sebagai sumber pakan hijauan ruminansia pada musim kemarau di kabupaten Pelalawan, Riau. Pengambilan data dilakukan di perkebunan kelapa sawit yang berumur 7, 10 dan 14 tahun milik rakyat pada akhir musim kemarau. Pengambilan sampel dengan destructive sampling method menggunakan metode garis berpetak memakai kuadran berukuran 1m2 dengan jumlah sampel tiap area sebanyak 10 titik. Berdasar hasil pengukuran diperoleh hasil jumlah vegetasi/ covercrop yang ada di kebun sawit berumur 7, 10 dan 14 tahun sebanyak 42 jenis yang bervariasi tiap umur tanaman sawit. Proporsi hijauan yang ada meliputi jenis rumput, legume dan paku-pakuan bervariasi pada tiap umur kebun sawit. Produksi hijauan yang ada di bawah kebun sawit berumur 7, 10 dan 14 tahun berturut-turut 2.571 kg/ha, 1.479,76 kg/ha dan 1.417,22 kg/ha dalam bentuk segar serta sebesar 811,41 kg/ha, 471,15 kg/ha dan 456,91 kg/ha dalam bahan kering. Kapasitas tampung dari kebun sawit berumur 7, 10 dan 14 tahun adalah 0,36 satuan ternak (ST)/ha, 0,21 ST/ha dan 0,20 ST/ha.Keywords: cover crops, oil palm plantation, forage, ruminant, dry season, Pelalawan


2021 ◽  
Vol 13 (12) ◽  
pp. 6910
Author(s):  
Adil Dilawar ◽  
Baozhang Chen ◽  
Arfan Arshad ◽  
Lifeng Guo ◽  
Muhammad Irfan Ehsan ◽  
...  

Here, we provided a comprehensive analysis of long-term drought and climate extreme patterns in the agro ecological zones (AEZs) of Pakistan during 1980–2019. Drought trends were investigated using the standardized precipitation evapotranspiration index (SPEI) at various timescales (SPEI-1, SPEI-3, SPEI-6, and SPEI-12). The results showed that droughts (seasonal and annual) were more persistent and severe in the southern, southwestern, southeastern, and central parts of the region. Drought exacerbated with slopes of −0.02, −0.07, −0.08, −0.01, and −0.02 per year. Drought prevailed in all AEZs in the spring season. The majority of AEZs in Pakistan’s southern, middle, and southwestern regions had experienced substantial warming. The mean annual temperature minimum (Tmin) increased faster than the mean annual temperature maximum (Tmax) in all zones. Precipitation decreased in the southern, northern, central, and southwestern parts of the region. Principal component analysis (PCA) revealed a robust increase in temperature extremes with a variance of 76% and a decrease in precipitation extremes with a variance of 91% in the region. Temperature and precipitation extremes indices had a strong Pearson correlation with drought events. Higher temperatures resulted in extreme drought (dry conditions), while higher precipitation levels resulted in wetting conditions (no drought) in different AEZs. In most AEZs, drought occurrences were more responsive to precipitation. The current findings are helpful for climate mitigation strategies and specific zonal efforts are needed to alleviate the environmental and societal impacts of drought.


Sign in / Sign up

Export Citation Format

Share Document