scholarly journals Soil compaction around Eucalyptus grandis roots: a micromorphological study

Soil Research ◽  
2005 ◽  
Vol 43 (2) ◽  
pp. 139 ◽  
Author(s):  
E. P. Clemente ◽  
C. E. G. R. Schaefer ◽  
R. F. Novais ◽  
J. H. Viana ◽  
N. F. Barros

This study aimed to evaluate the effects of Eucalyptus grandis root growth on localised soil compaction and fracturing. Undisturbed soil (Kandiustox) samples subjected to root growth pressure were used, employing 2 methods to study the phenomenon: (i) micromorphological analysis of thin sections of soil samples compacted by roots of 0.3, 0.9, 1.3, 2.8, 3.5, 6.4, 8.0, 9.0, and 10.2 cm diameter, carried out in the zone under direct root influence, up to 1 cm from the root–soil surface, compared with a reference area at a distance of 3 cm from the contact surface; (ii) a localised infiltration test to assess the time taken to infiltrate one drop of water into the surface of root-compacted soils, compared with the time taken in a reference sample without root compaction. The soil compaction was greater around root diameters >3.5 cm, and this effect was accompanied by reduced water infiltration in the soil surface at the root contact. Presence of chiseling fractures at an approximate 45° angle to the soil surface suggested helicoidal growth of the E. grandis root, causing both soil compression and shearing. At microscopic level the soil-root contact showed clay-oriented features, microfractures, fungi coatings, and micro-slickensides. The lower infiltration rate in the compacted soil–root surface is associated with both physical (compaction) and chemical (possibly hydrophobicity) mechanisms. The use of micromorphological techniques and image analysis allowed the observation and quantification of soil porosity in the vicinity of roots.

2000 ◽  
Vol 30 (8) ◽  
pp. 1196-1205 ◽  
Author(s):  
J R Williamson ◽  
W A Neilsen

Soil compaction has been considered a principal form of damage associated with logging, restricting root growth and reducing productivity. The rate and extent of soil compaction on skid trails was measured at six field locations covering a range of dry and wet forests. Data was collected for up to 21 passes of a laden logging machine. A similar extent of compaction, averaging 0.17 g·cm-3 increase in total soil bulk density (BD), was recorded for all field sites despite substantial site and soil differences. On average, 62% of the compaction in the top 10 cm of the soil occurred after only one pass of a laden logging machine. The environment under which soils had formed played a major role in determining the BD of the undisturbed soil. Compaction was strongly related to the original BD, forest type, and soil parent material. Soil strengths obtained in the field fell below levels found to restrict root growth. However, reduction in macropores, and the effect of that on aeration and drainage could reduce tree growth. On the wettest soils logged, machine forces displaced topsoils rather than causing compaction in situ. Recommended logging methods and implications for the development of sustainability indices are discussed.


Irriga ◽  
2003 ◽  
Vol 8 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Amauri Nelson Beutler ◽  
José Frederico Centurion ◽  
Cassiano Garcia Roque ◽  
Zigomar Menezes de Souza

INFLUÊNCIA DA COMPACTAÇÃO E DO CULTIVO DE SOJA NOS ATRIBUTOS FÍSICOS E NA CONDUTIVIDADE HIDRÁULICA EM LATOSSOLO VERMELHO   Amauri Nelson BeutlerJosé Frederico CenturionCassiano Garcia RoqueZigomar Menezes de SouzaDepartamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP. CEP 14870-000. E-mail: [email protected], [email protected]  1 RESUMO              Este estudo teve como objetivo determinar a influência da compactação e do cultivo de soja nos atributos físicos e na condutividade hidráulica de um Latossolo Vermelho de textura média. O experimento foi conduzido na Universidade Estadual Paulista – Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal (SP). Os tratamentos foram: 0, 1, 2, 4 e 6 passadas de um trator, uma ao lado da outra perfazendo toda a superfície do solo, com quatro repetições. O delineamento experimental foi inteiramente casualizado para a condutividade hidráulica e, em esquema fatorial 5 x 2 para os atributos físicos. Foram coletadas amostras de solo nas faixas de profundidades de 0,02-0,05; 0,07-0,10 e 0,15-0,18 m, por ocasião da semeadura e após a colheita para determinação da densidade do solo, porosidade total, macro e microporosidade do solo. A condutividade hidráulica do solo foi determinada após a colheita. O tempo entre a semeadura e a colheita de soja foi suficiente para aumentar a compactação do solo apenas na condição de solo solto. A compactação do solo reduziu a condutividade hidráulica em relação a condição natural (mata) e a condição de solo solto, sendo que esta não foi reduzida, após a primeira passagem, com o aumento no número de passagens.  UNITERMOS: Densidade do solo, porosidade do solo, infiltração de água, soja.  BEUTLER, A. N.; CENTURION, J. F.; ROQUE, C. G.; SOUZA, Z. M. COMPACTION AND SOYBEAN GROW INFLUENCE ON PHYSICAL ATTRIBUTES AND  HYDRAULIC CONDUCTIVITY IN RED LATOSSOL SOIL   2 ABSTRACT  The purpose of this study was to determine the influence of compaction and soybean grow on physical attributes and hydraulic conductivity of a Red Latossol, medium texture soil. The experiment was carried out in the experimental farm at the Paulista State University  – Agricultural Science College, Jaboticabal – São Paulo state. The treatments were 0, 1, 2, 4 and 6 side-by-side tractor strides on the soil surface with four replications. The experimental design was completely randomized for hydraulic conductivity and a 5 x 2 factorial design for soil physical attributes. Soil samples have been collected at 0.02-0.05, 0.07-0.10 and 0.15-0.18 m depth at sowing season and after harvest in order to determine soil bulk density, total porosity, macro and micro porosity. Soil hydraulic conductivity was determined after harvest. The time period between the soybean sowing and harvesting was enough to increase soil compaction only in loose soil condition. Soil compaction reduced hydraulic conductivity compared to the natural (forest) and loose soil condition  KEYWORDS: Bulk density, soil porosity, water infiltration, soybean.


1985 ◽  
Vol 9 (1) ◽  
pp. 44-48 ◽  
Author(s):  
J. A. Gent ◽  
R. Ballard

Abstract Trafficking during harvesting significantly increased soil bulk density to depths of 3 to 6 inches in areas outside of primary skid trails and 9 to 12 inches in primary skid trails. On the Coastal Plain site, bedding was effective in offsetting soil compaction in areas outside of primary skid trails, forming a new soil surface, 7 to 8 inches in height, over the surface trafficked during harvest. Bedding may not be so effective in the skid trails, because the original soil surface under the bed was so compacted that root growth may be inhibited. On the Piedmont site, disking was effective in restoring bulk density to preharvest levels in the upper 3 to 5 inches of soil, but soil compaction in the upper 3 to 9 inches of drum-chopped areas may result in reduced root growth, because of mechanical impedance.


1967 ◽  
Vol 7 (28) ◽  
pp. 447
Author(s):  
TR Evans

A new technique is described for placement of radioactive solutions for studies on root growth. This technique involves placement of a perforated ring of polythene tubing at a predetermined depth with an access tube leading to the soil surface. Cylinders of 16 gauge galvanised iron and of different diameters are used for placement of polythene rings. Soil is excavated from outside the cylinder as it is forced to the required depth ; the polythene is placed in position and soil back-filled over it as the cylinder is withdrawn, thus leaving an undisturbed core of soil of the same diameter as the cylinder to the depth of placement. Radioactive solution introduced through the access tube from an automatic burette is distributed evenly in the soil by percolation from the perforated polythene ring. Rate of root growth of single plants through the undisturbed soil can be determined from measurement of radioactivity in plant leaves at various intervals of time. The technique was tested using radioactive phosphate (32P) as tracer and Paspalm commersonii Lam. as the test species. Root growth both vertically and laterally was measured. The advantages of this technique compared with others at present in use are : 1. Non-disturbance of the soil through which root growth is being measured. 2. Repeated applications of radioactive solution without disturbance of the system may be made in long-term studies. 3. Soil contamination by 32P solution above the point of placement is eliminated. The technique is well suited for studies on root growth and activity of single plants, or for competition studies.


Biologia ◽  
2015 ◽  
Vol 70 (11) ◽  
Author(s):  
Radka Kodešová ◽  
Karel Němeček ◽  
Anna Žigová ◽  
Antonín Nikodem ◽  
Miroslav Fér

AbstractPlants influence the water regime in soil by both water uptake and an uneven distribution of water infiltration at the soil surface. The latter process is more poorly studied, but it is well known that roots modify soil structure by enhancing aggregation and biopore production. This study used a dye tracer to visualize the impact of plants on water flow in the topsoil of a Greyic Phaeozem. Brilliant blue was ponded to 10 cm height in a 1 m × 1 m frame in the field immediately after harvest of winter wheat (Triticum aestivum L.). After complete infiltration, the staining patterns within the vertical and horizontal field-scale sections were studied. In addition, soil thin sections were made and micromorphological images were used to study soil structure and dye distribution at the microscale. The field-scale sections clearly documented uneven dye penetration into the soil surface, which was influenced by plant presence and in some cases by mechanical compaction of the soil surface. The micromorphological images showed that root activities compress soil and increases the bulk density near the roots (which could be also result of root water uptake and consequent soil adhesion). On the other hand in few cases a preferential flow along the roots was observed.


1985 ◽  
Vol 36 (2) ◽  
pp. 171 ◽  
Author(s):  
WS Meyer ◽  
HD Barrs ◽  
RCG Smith ◽  
NS White ◽  
AD Heritage ◽  
...  

Two watering treatments (flood and control) were applied to undisturbed (bulk density �? 1.6 mg mm-3 ) and repacked �? 1.2 mg mm-3 ) cylinders of Marah clay loam. The cylinders (0.75 m o.d. by 1.4 m deep) were housed in a lysimeter facility. Wheat (cv. Egret) was grown in the cylinders and the soil was either kept well watered with frequent small amounts of water (control treatment) or subjected to three separate periods, ranging from 4 to 72 h, of surface inundation (flood treatment). The greater pore space and better drainage of the repacked soil ensured that its average level of soil oxygen (O2) was about three times that of the undisturbed soil. Nevertheless, inundation of the soil surface for either 48 or 72 h rapidly decreased soil O2 levels in both soils. Root growth in these soils appeared to be slowed when soil O2 levels became less than 15% of the maximum that would occur in dry, aerated soil. Root growth ceased in both repacked and undisturbed soil cores after a 48-h flooding, when the soil O2 status was probably < 10% of the maximum. Root growth was greatest in the repacked soil with controlled water additions. The ranking of treatments, by either root intercept counts or O2 status, were the same. Leaf and stem growth were not very sensitive to the root zone conditions, but this may have been due to the advanced stage of plant growth when the treatments were applied and to the generally low nitrogen status of all treatment plants. There was a 44% reduction in yield from the best to the worst aerated soil treatment. The data show that if soil O2 levels become low as the result of flooding, root growth of wheat will stop and grain yield will be substantially decreased. Greatly improved aeration of these fine-textured soils is only possible if both the internal drainage properties of the soil are improved and prolonged periods of surface inundation are avoided.


Jurnal Solum ◽  
2007 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Syafrimen Yasin ◽  
Gusnidar Gusnidar ◽  
Dedy Iskandar

A research conducted in Sungai Rumbai, Dharmasraya Regency and in Soil Laboratory Andalas university was aimed to evaluate soil fertility status on the depth below 0-20 cm from several land use types , especially under Mixed Garden and annual cultivated dryland soil.  Soil samples were taken on Ultisol at 0-8% slope (late-waving soil surface).  Land use types evaluated were forest, annual cultivated dryland, bush land, rangeland covered by Imperata cylindrica and mixed garden.  Composite soil samples for soil chemical analysis were taken on the 0-20 cm soil depth with four replications, and 5 drillings for each replication.  Undisturbed soil samples by using sample ring were used to analyze sol bulk volume.  The data resulted were compared to the criteria and were statistically tested using Analysis of Variance and then were continued by LSD at 5% level.  From the results of analyses could be concluded that land use  for mixed garden had the higher Organic Carbon (OC) content and the lower bulk volume (BV) than those for annual cultivated dryland soil.Key Words: Degradasi Lahan, Kebun Campuran, Tegalan


2008 ◽  
Vol 16 (3) ◽  
pp. 267 ◽  
Author(s):  
K. RASA ◽  
R. HORN ◽  
M. RÄTY

Water repellency (WR) delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95) at the time of sampling. WR increased as follows: sand (R = 1.8-5.0) < clay (R = 2.4-10.3) < organic (R = 7.9-undefined). At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr.), where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;


Insects ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 4 ◽  
Author(s):  
Sougueh Cheik ◽  
Rashmi Ramesh Shanbhag ◽  
Ajay Harit ◽  
Nicolas Bottinelli ◽  
Raman Sukumar ◽  
...  

Termites are undoubtedly amongst the most important soil macroinvertebrate decomposers in semi-arid environments in India. However, in this specific type of environment, the influence of termite foraging activity on soil functioning remains unexplored. Therefore, this study examines the link between the quality of litter and the functional impact of termite feeding preferences on soil properties and soil hydraulic conductivity in a deciduous forest in southern India. Different organic resources (elephant dung: “ED”, elephant grass: “EG”, acacia leaves: “AL” and layers of cardboard: “CB”) were applied on repacked soil cores. ED appeared to be the most attractive resource to Odontotermes obesus, leading to a larger amount of soil sheeting (i.e., the soil used by termites for covering the litter they consume), more numerous and larger holes in the ground and a lower soil bulk density. As a consequence, ED increased the soil hydraulic conductivity (4-fold) compared with the control soil. Thus, this study highlights that the more O. obesus prefers a substrate, the more this species impacts soil dynamics and water infiltration in the soil. This study also shows that ED can be used as an efficient substrate for accelerating the infiltration of water in southern-Indian soils, mainly through the production of galleries that are open on the soil surface, offering new perspectives on termite management in this environment.


Soil Research ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 443 ◽  
Author(s):  
NS Jayawardane ◽  
HD Barrs ◽  
WA Muirhead ◽  
J Blackwell ◽  
E Murray ◽  
...  

Subsoil acidity causes low crop production, which is often associated with shallow root development and restricted soil water extraction. In part I of this series, lime-slotting of an acid soil was shown to improve the soil physical and chemical characteristics for root growth. In a lysimeter study on an acid soil, the effects of several soil ameliorative treatments on root growth, water extraction and yields of a medic crop were evaluated. Large lysimeter cores of 0.75 m diameter and 1.35 m deep were used. The soil treatments included a non-ameliorated acid soil, lime-slotting with a 0.15 m wide and 0.8 m deep slot containing 20 t ha-1 of lime, lime-slotting combined with surface phospho-gypsum application at 10 t ha-1, and complete amelioration of the entire soil volume by mixing lime at 133 t ha-1 and repacking to a low bulk density of 1.1 t m-3. In the non-ameliorated acid soil, medic roots were confined to the surface (0.1 m) layer, resulting in limited water extraction of 32 mm during a prolonged drying cycle, and a low dry matter yield of 70 g m-2. In the lime slotted soil, roots grew within the slot to its full depth, although penetration into the undisturbed soil was restricted to the soil immediately adjacent to the slot. Consequently, the root length per unit surface area (La) at depths below 0.1 m depth was increased to 9.9 km m-2. During a drying cycle, water extraction increased to 58 mm. The increased water extraction came from both the slotted soil and the undisturbed soil between slots. This led to an increase in dry matter yields to 270 g m2. In lime-slotted soils with surface gypsum applications, the root growth and crop water extraction patterns were similar to the lime-slotted soil. Repacking limed soil resulted in similar root lengths (L(a) 10.0 km m-2) as lime-slotted soil. However, owing to more uniform distribution of roots in the repacked soil, water extraction was increased to 100 mm and yields increased to 590 g m-2. Yields of non-ameliorated soil were only 12% of the repacked, limed soil. However, lime-slotting which involves loosening only 25% of the soil surface area and addition of only one-sixth of the amount of lime required for complete soil amelioration, led to marked increases in yield (46% of the yield of repacked soil). Future field studies are required to evaluate the optimum limed-slot configurations required for different soils, crops and climatic regimes.


Sign in / Sign up

Export Citation Format

Share Document