Carbon stocks in Tasmanian soils

Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 83 ◽  
Author(s):  
W. E. Cotching

Soil carbon (C) stocks were calculated for Tasmanian soil orders to 0.3 and 1.0 m depth from existing datasets. Tasmanian soils have C stocks of 49–117 Mg C/ha in the upper 0.3 m, with Ferrosols having the largest soil C stocks. Mean soil C stocks in agricultural soils were significantly lower under intensive cropping than under irrigated pasture. The range in soil C within soil orders indicates that it is critical to determine initial soil C stocks at individual sites and farms for C accounting and trading purposes, because the initial soil C content will determine if current or changed management practices are likely to result in soil C sequestration or emission. The distribution of C within the profile was significantly different between agricultural and forested land, with agricultural soils having two-thirds of their soil C in the upper 0.3 m, compared with half for forested soils. The difference in this proportion between agricultural and forested land was largest in Dermosols (0.72 v. 0.47). The total amount of soil C in a soil to 1.0 m depth may not change with a change in land use, but the distribution can and any change in soil C deeper in the profile might affect how soil C can be managed for sequestration. Tasmanian soil C stocks are significantly greater than those in mainland states of Australia, reflecting the lower mean annual temperature and higher precipitation in Tasmania, which result in less oxidation of soil organic matter.

2021 ◽  
Author(s):  
Thomas Guillaume ◽  
David Makowski ◽  
Zamir Libohova ◽  
Luca Bragazza ◽  
Sokrat Sinaj

<p>Increasing soil organic carbon (SOC) in agro-ecosystems enables to address simultaneously food security as well as climate change adaptation and mitigation. Croplands represent a great potential to sequester atmospheric C because they are depleted in SOC. Hence, reliable estimations of SOC deficits in agro-ecosystems are crucial to evaluate the C sequestration potential of agricultural soils and support management practices. Using a 30-year old soil monitoring networks with 250 sites established in western Switzerland, we identified factors driving the long-term SOC dynamics in croplands (CR) and permanent grasslands (PG) and quantified SOC deficit. A new relationship between the silt + clay (SC) soil particles and the C stored in the mineral-associated fraction (MAOMC) was established. We also tested the assumption about whether or not PG can be used as carbon-saturated reference sites. The C-deficit in CR constituted about a third of their potential SOC content and was mainly affected by the proportion of temporary grassland in the crop rotation. SOC accrual or loss were the highest in sites that experienced land-use change. The MAOMC level in PG depended on the C accrual history, indicating that C-saturation level was not coincidental. Accordingly, the relationship between MAOMC and SC to determine soil C-saturation should be estimated by boundary line analysis instead of least squares regressions. In conclusion, PG do provide an additional SOC storage capacity under optimal management, though the storage capacity is greater for CR.</p>


2015 ◽  
Vol 12 (14) ◽  
pp. 4373-4383 ◽  
Author(s):  
Z. Luo ◽  
E. Wang ◽  
H. Zheng ◽  
J. A. Baldock ◽  
O. J. Sun ◽  
...  

Abstract. Soil carbon (C) models are important tools for understanding soil C balance and projecting C stocks in terrestrial ecosystems, particularly under global change. The initialization and/or parameterization of soil C models can vary among studies even when the same model and data set are used, causing potential uncertainties in projections. Although a few studies have assessed such uncertainties, it is yet unclear what these uncertainties are correlated with and how they change across varying environmental and management conditions. Here, applying a process-based biogeochemical model to 90 individual field experiments (ranging from 5 to 82 years of experimental duration) across the Australian cereal-growing regions, we demonstrated that well-designed optimization procedures enabled the model to accurately simulate changes in measured C stocks, but did not guarantee convergent forward projections (100 years). Major causes of the projection uncertainty were due to insufficient understanding of how microbial processes and soil C pool change to modulate C turnover. For a given site, the uncertainty significantly increased with the magnitude of future C input and years of the projection. Across sites, the uncertainty correlated positively with temperature but negatively with rainfall. On average, a 331 % uncertainty in projected C sequestration ability can be inferred in Australian agricultural soils. This uncertainty would increase further if projections were made for future warming and drying conditions. Future improvement in soil C modelling should focus on how the microbial community and its C use efficiency change in response to environmental changes, and better conceptualization of heterogeneous soil C pools and the C transformation among those pools.


2018 ◽  
Vol 55 (3) ◽  
pp. 452-470 ◽  
Author(s):  
ULF SCHNEIDEWIND ◽  
WIEBKE NIETHER ◽  
LAURA ARMENGOT ◽  
MONIKA SCHNEIDER ◽  
DANIELA SAUER ◽  
...  

SUMMARYAgroforestry systems (AFS) can serve to decrease ecosystem carbon (C) losses caused by deforestation and inadequate soil management. Because of their shade tolerance, cacao plants are suitable to be grown in AFS, since they can be combined with other kinds of trees and shrubs. The potential for C sequestration in cacao farming systems depends on various factors, such as management practices, stand structure and plantation age. We compared conventionally and organically managed cacao monoculture systems (MCS) and AFS in Sara Ana (Bolivia) with respect to C stocks in plant biomass and to amounts of litterfall and pruning residues. The total aboveground C stocks of the AFS (26 Mg C ha−1) considerably exceeded those of the MCS (~7 Mg C ha−1), although the biomass of cacao trees was greater in the MCS compared to the AFS. Due to higher tree density, annual litterfall in the AFS (2.2 Mg C ha−1 year−1) substantially exceeded that in the MCS (1.2 Mg C ha−1 year−1). The amounts of C in pruning residues (2.6 Mg C ha−1 year−1 in MCS to 4.3 Mg C ha−1 year−1 in AFS) was more than twice those in the litterfall. Annual nitrogen (N) inputs to the soil through pruning residues of cacao and N-fixing trees were up to 10 times higher than the N inputs through external fertiliser application. We conclude that appropriate management of cacao AFS, involving the pruning of leguminous trees, will lead to increases in biomass, litter quantity and quality as well as soil C and N stocks. Thus, we recommend stimulating the expansion of well-managed AFS to improve soil fertility and enhance C sequestration in soils.


2020 ◽  
Author(s):  
Mike Beare ◽  
Erin Lawrence-Smith ◽  
Denis Curtin ◽  
Sam McNally ◽  
Frank Kelliher ◽  
...  

<p><span>The global atmospheric concentration of CO<sub>2</sub> and other greenhouse gases (GHG) is steadily increasing. It is estimated that, worldwide, soil C sequestration could offset GHG emissions by 400–1200 Mt C per year. Relative to 1990, New Zealand’s CH<sub>4</sub> and N<sub>2</sub>O emissions in 2013 had increased by 7% and 23% respectively, which translates to an annual emission increase of 1.09 Mt C that could be offset by a similar annual increase in soil C stock. Recent research has shown that some New Zealand pastoral soils are under-saturated in SOC. Subsurface soils (15–30 cm depth) typically have a greater soil C saturation deficit than topsoil (0-30 cm) because plant C inputs (roots) are lower. Using management practices that expose more of the under-saturated soil to higher C inputs could result in increased soil C storage and stabilisation.</span></p><p><span>Pasture renewal (destruction and re-establishment of pasture) is promoted to livestock farmers to improve pasture performance. This typically involves shallow cultivation or direct drilling to establish new grass. Whereas shallow cultivation of soil typically results in a loss of SOC, deeper full inversion tillage (FIT) of soil would result in the burial of C-rich topsoil in closer proximity to mineral material that has a higher stabilisation capacity.  Buried SOC is expected to have a slower decomposition rate owing to less variable temperatures and more anoxic conditions. Deep FIT would also bring under-saturated mineral soil to the surface, where the deposition of SOC from high producing pastures could increase the stabilisation of SOC.  Both the slower turnover of buried SOM and greater stabilisation of new carbon on under-saturated minerals at the soil surface are expected to result in increased SOC sequestration. </span></p><p><span>There is a lack of experimental data to directly address the effect of FIT on soil C stocks in pastoral soils. We applied a simple empirical model to predicting changes in soil C stocks following a one-off application of FIT (30 cm) during pasture renewal. The model accounts for the decomposition of SOC in buried topsoil and the accumulation of C in the new topsoil (inverted subsoil). The model was used to derive national estimates of soil C sequestration under different scenarios of C accumulation efficiency, farmer adoption of FIT and pasture renewal rates.</span></p><p>Our modelled estimates suggest that 32 Mt C could be sequestered over 20 years following a one-time application of FIT (0-30 cm) to 2 M ha of High Producing Grasslands on suitable New Zealand soils. This estimate is based on 100% accumulation efficiency (i.e. topsoil C stocks are returned to pre-inversion levels within 20 years) and a 10% annual rate of pasture renewal. In the absence of direct experimental evidence, a more conservative estimate is warranted, where topsoil C stocks are projected to return to 80% of pre-inversion levels, thus sequestering 20 Mt C. This paper will present our modelled estimates of SOC sequestration during FIT pasture renewal and discuss the potential benefits and adverse effects of deploying this management practice.</p>


2021 ◽  
Vol 17 ◽  
Author(s):  
Aaron Wall ◽  
Jordan Goodrich ◽  
Louis Schipper

New Zealand’s agricultural pastures contain significant soil carbon (C) stocks that are susceptible to change when impacted by management and natural processes (e.g., climate). Inputs of C to these pastoral soils is through photosynthetic uptake of atmospheric CO2 either on-site or elsewhere. Changes in soil C stocks are in response to the management of the system that alters the input-output balance. Increasing the resilience of pastures to climatic events such as hot and dry summers or cool and wet winters can increase inputs of C to the soil while sustaining above-ground production and so provide an opportunity for C sequestration. Furthermore, increased pasture for grazing can reduce the need for management practices identified as detrimental for soil C stocks such as irrigation or the production of cropped supplemental feed. A reduction in the need for renewal and its associated soil C losses, and the establishment of a more diverse sward, especially if deeper-rooting species are included, has the potential for increasing soil C stocks provided the diversity can be maintained. From a soil C perspective, a resilient pasture maximises CO2 uptake to ensure adequate above- and below-ground inputs to maintain or increase soil C stocks and minimise the need for management activities detrimental to soil C.


2021 ◽  
Vol 9 (5) ◽  
pp. 983
Author(s):  
Cristina Lazcano ◽  
Xia Zhu-Barker ◽  
Charlotte Decock

The use of organic fertilizers constitutes a sustainable strategy to recycle nutrients, increase soil carbon (C) stocks and mitigate climate change. Yet, this depends largely on balance between soil C sequestration and the emissions of the potent greenhouse gas nitrous oxide (N2O). Organic fertilizers strongly influence the microbial processes leading to the release of N2O. The magnitude and pattern of N2O emissions are different from the emissions observed from inorganic fertilizers and difficult to predict, which hinders developing best management practices specific to organic fertilizers. Currently, we lack a comprehensive evaluation of the effects of OFs on the function and structure of the N cycling microbial communities. Focusing on animal manures, here we provide an overview of the effects of these organic fertilizers on the community structure and function of nitrifying and denitrifying microorganisms in upland soils. Unprocessed manure with high moisture, high available nitrogen (N) and C content can shift the structure of the microbial community, increasing the abundance and activity of nitrifying and denitrifying microorganisms. Processed manure, such as digestate, compost, vermicompost and biochar, can also stimulate nitrifying and denitrifying microorganisms, although the effects on the soil microbial community structure are different, and N2O emissions are comparatively lower than raw manure. We propose a framework of best management practices to minimize the negative environmental impacts of organic fertilizers and maximize their benefits in improving soil health and sustaining food production systems. Long-term application of composted manure and the buildup of soil C stocks may contribute to N retention as microbial or stabilized organic N in the soil while increasing the abundance of denitrifying microorganisms and thus reduce the emissions of N2O by favoring the completion of denitrification to produce dinitrogen gas. Future research using multi-omics approaches can be used to establish key biochemical pathways and microbial taxa responsible for N2O production under organic fertilization.


2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

<p>Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).</p><p>Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.</p><p>Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.</p>


2018 ◽  
Vol 115 (11) ◽  
pp. 2776-2781 ◽  
Author(s):  
Lucas E. Nave ◽  
Grant M. Domke ◽  
Kathryn L. Hofmeister ◽  
Umakant Mishra ◽  
Charles H. Perry ◽  
...  

Soils are Earth’s largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from two national-level databases with remote sensing information to address the impacts of reforestation on the sequestration of C in topsoils (uppermost mineral soil horizons). We quantify C stocks in cultivated, reforesting, and natural forest topsoils; rates of C accumulation in reforesting topsoils; and their contribution to the US forest C sink. Our results indicate that reforestation increases topsoil C storage, and that reforesting lands, currently occupying >500,000 km2 in the United States, will sequester a cumulative 1.3–2.1 Pg C within a century (13–21 Tg C·y−1). Annually, these C gains constitute 10% of the US forest sector C sink and offset 1% of all US greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document